Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (9): 59-74    DOI: 10.13523/j.cb.20160908
综述     
长链非编码RNA的研究现状
堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺
四川农业大学动物科技学院 成都 611130
Research Progress of Long Non-coding RNAs
DU Jing-jing, TAN Zhen-dong, LIU Chen-dong, WU Xiao-qiao, ZHANG Pei-wen, ZHANG Shun-hua, ZHU Li
College of Animal Science and Technology, Chengdu 611130, China
 全文: PDF(2135 KB)   HTML
摘要:

长链非编码RNA(lncRNA)是一类长度大于200bp的非编码RNA,无蛋白质编码功能,物种间保守性差,具有较强的组织特异性和时空特异性。研究表明ncRNA具有广泛的生物学功能,如参与RNA的生成与加工、转录调控、染色质重塑等,且作用机制复杂,如能通过绑定特点蛋白质参与转录调节或作为ceRNA参与转录后调控。但lncRNA的结构复杂,功能研究进展缓慢,目前仍难以对其细致分类。从基本特征、分类、功能、数据库、研究工具及其与癌症之间的关系等方面对lncRNA的研究进展进行综述,以期为lncRNA后续研究提供参考。

关键词: 分类非编码RNAlncRNA功能癌症    
Abstract:

Long non-coding RNAs (LncRNAs) are RNAs that larger than 200bp, and cannot encode proteins. Additionally, lncRNAs are badly conserved among different species, but have strong tissue specificity and temporal specificity. Recently, more and more evidences showed that lncRNAs are involved in a wide range of biological functions, including RNA biogenesis and processing, transcription regulation, chromatin modification, etc. by binding special budget proteins or as a ceRNA. However, the structure of lncRNA is very complex, and the research process of lncRNA's functionis very slowly, until now a detailed classification of lncRNA has not been done. Current knowledge of the general characteristics, categories, mechanisms, websites, and methods of lncRNA, and the proved relationship between lncRNA and cancer were reviewed, in order to provide reference for further studying the role of lncRNA.

Key words: Categories    Cancer    lncRNA    Non-coding RNA    Functions
收稿日期: 2016-02-01 出版日期: 2016-03-16
ZTFLH:  Q522  
基金资助:

四川省科技支撑计划项目(2013NZ0041,2013NZ0056),四川省科技富民强县专项行动计划资助项目

通讯作者: 张顺华, 朱砺     E-mail: 363445986@qq.com;zhuli7508@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
堵晶晶
谭镇东
刘辰东
巫小倩
张培文
张顺华
朱砺

引用本文:

堵晶晶, 谭镇东, 刘辰东, 巫小倩, 张培文, 张顺华, 朱砺. 长链非编码RNA的研究现状[J]. 中国生物工程杂志, 2016, 36(9): 59-74.

DU Jing-jing, TAN Zhen-dong, LIU Chen-dong, WU Xiao-qiao, ZHANG Pei-wen, ZHANG Shun-hua, ZHU Li. Research Progress of Long Non-coding RNAs. China Biotechnology, 2016, 36(9): 59-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160908        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I9/59

[1] Hannon G J. RNA interference. Nature, 2002, 418(6894):244-251.
[2] Huang B, Zhang R. Regulatory non-coding RNAs:revolutionizing the RNA world. Molecular Biology Reports, 2014, 41(6):3915-3923.
[3] Dong P, Yu F, Fan X, et al. Inhibition of ATIR by shRNA prevents collagen synthesis in hepatic stellate cells. Molecular and Cellular Biochemistry, 2010, 344(1-2):195-202.
[4] Gehrau R, Mas V, Villamil F, et al. MicroRNA signature at the time of clinical HCV recurrence associates with aggressive fibrosis progression post-liver transplantation. American Journal of Transplantation, 2013, 13(3):729-737.
[5] Ohtani M, Takebayashi A, Hiroyama R, et al. Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. Journal of Plant Research, 2015, 128(3):371-380.
[6] Hutten S, Chachami G, Winter U, et al. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase Ⅱ. Journal of Cell Science, 2014, 127(5):1065-1078.
[7] Matzke M A, Mosher R A. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 2014, 15(6):394-408.
[8] Porrua O, Libri D. Transcription termination and the control of the transcriptome:why, where and how to stop. Nature Reviews Molecular Cell Biology, 2015, 16(3):190-202.
[9] Lam M T, Li W, Rosenfeld M G, et al. Enhancer RNAs and regulated transcriptional programs. Trends in Biochemical Sciences, 2014, 39(4):170-182.
[10] Vance K W, Ponting C P. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends in Genetics, 2014, 30(8):348-355.
[11] Natoli G, Andrau J C. Noncoding transcription at enhancers:general principles and functional models. Annual Review of Genetics, 2012, 46(7):1-19.
[12] Lee J T. Epigenetic regulation by long noncoding RNAs. Science, 2012, 338(6113):1435-1439.
[13] Guttman M, Rinn J L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385):339-346.
[14] Wang K C, Chang H Y. Molecular mechanisms of long noncoding RNAs. Molecular Cell, 2011, 43(6):904-914.
[15] Rinn J L, Chang H Y. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 2012, 81(7):145-166.
[16] Ulitsky I, Bartel D P. lincRNAs:genomics, evolution, and mechanisms. Cell, 2013, 154(1):26-46.
[17] Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235):223-227.
[18] Qiu M T, Hu J W, Yin R, et al. Long noncoding RNA:an emerging paradigm of cancer research. Tumor Biology, 2013, 34(2):613-620.
[19] Birney E, Stamatoyannopoulos J A, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146):799-816.
[20] Djebali S, Davis C A, Merkel A, et al. Landscape of transcription in human cells. Nature, 2012, 489(7414):101-108.
[21] Danko C G, Hah N, Luo X, et al. Signaling pathways differentially affect RNA polymerase Ⅱ initiation, pausing, and elongation rate in cells. Molecular Cell, 2013, 50(2):212-222.
[22] Conley A B, Miller W J, Jordan I K. Human cis natural antisense transcripts initiated by transposable elements. Trends in Genetics, 2008, 24(2):53-56.
[23] Dinger M E, Amaral P P, Mercer T R, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 2008, 18(9):1433-1445.
[24] Ponting C P, Oliver P L, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4):629-641.
[25] Ramskold D, Wang E T, Burge C B, et al. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol, 2009, 5(12):e1000598.
[26] Hu X, Feng Y, Zhang D, et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 2014, 26(3):344-357.
[27] Mikkelsen T S, Ku M, Jaffe D B, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448(7153):553-560.
[28] Sánchez Y, Segura V, Marín-Béjar O, et al.Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nature Communications, 2014, 5(12):1-13.
[29] Zhang Q, Chen C Y, Yedavalli V S, et al. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio, 2013, 4(1):e00596-00512.
[30] Zhao W, Mu Y, Ma L, et al.Systematic identification and characterization of long intergenic non-coding RNAs in fetal porcine skeletal muscle development. Scientific Reports, 2015, 5:1-8.
[31] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs:analysis of their gene structure, evolution, and expression. Genome Research, 2012, 22(9):1775-1789.
[32] Han L, Zhang K, Shi Z, et al. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. International Journal of Oncology, 2012, 40(6):2004-2012.
[33] Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 2011, 25(18):1915-1927.
[34] Liu X, Sun M, Nie F, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer, 2014, 13(1):92.
[35] Wang L, Zhao Y, Bao X, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Research, 2015, 25(3):335-350.
[36] Giannakakis A, Zhang J, Jenjaroenpun P, et al.Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Scientific Reports, 2015, 5:1-16.
[37] Kim D H, Marinov G K, Pepke S, et al. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell, 2015, 16(1):88-101.
[38] van Heesch S, van Iterson M, Jacobi J, et al.Extensive localization of long noncoding RNAs to the cytosol and mono-and polyribosomal complexes. Genome Biol, 2014, 15(1):1-12.
[39] Gonzalez I, Munita R, Agirre E, et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nature Structural & Molecular Biology, 2015, 22(5):370-376.
[40] Léveillé N, Melo C A, Rooijers K, et al.Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nature Communications, 2015, 6:1-12.
[41] Ørom U, Derrien T, Guigo R, et al. Long noncoding RNAs as enhancers of gene expression. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 75(58):325-331.
[42] van Dijk M, Visser A, Buabeng K M, et al. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Human Molecular Genetics, 2015, 24(19):5475-5485.
[43] Han P, Li W, Lin C H, et al.A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014,514(7520):102-106.
[44] Yan L, Zhou J, Gao Y, et al.Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene, 2014, 34(23):3076-3084.
[45] Li H J, Li X, Pang H, et al.Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Japanese Journal of Clinical Oncology, 2015,45(11):1055-1063.
[46] Wang K, Sun T, Li N, et al.MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.PLoS Genetics, 2014, 10(7):1-12.
[47] Wang F, Ying H, He B, et al. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget, 2015, 6(10):7899-7917.
[48] Gong C, Maquat L E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3[prime] UTRs via Alu elements. Nature, 2011, 470(7333):284-288.
[49] Wilusz J E. Long noncoding RNAs:re-writing dogmas of RNA processing and stability. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015, 1859(2016):128-138.
[50] Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature, 2013, 498(7455):516-520.
[51] Kim T, Cui R, Jeon Y J, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proceedings of the National Academy of Sciences, 2014, 111(11):4173-4178.
[52] Lai F, Orom U A, Cesaroni M, et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature, 2013, 494(7438):497-501.
[53] Mathiyalagan P, Keating S T, Du X J, et al.Chromatin modifications remodel cardiac gene expression. Cardiovascular Research, 2014,103(1):7-16.
[54] Böhmdorfer G, Wierzbicki A T. Control of chromatin structure by long noncoding RNA. Trends in Cell Biology, 2015, 25(10):623-632.
[55] Bida O, Gidoni M, Ideses D, et al.A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel. Oncotarget, 2015, 6(29):27880-27890.
[56] Singh R, Mo Y Y. LncRNA BC200 is induced by estradiol and regulates apoptosis in MCF-7 breast cancer cells. Cancer Research, 2015, 75(15 Supplement):156-156.
[57] Feng J, Funk W D, Wang S S, et al. The RNA component of human telomerase. Science. 1995, 269(5228):1236-1241.
[58] Yang L, Lin C, Liu W, et al. ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 2011, 147(4):773-788.
[59] Yang L, Lin C, Jin C, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 2013, 500(7464):598-602.
[60] Tsai M C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992):689-693.
[61] Martens J A, Laprade L, Winston F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature, 2004, 429(6991):571-574.
[62] Jiang W, Liu Y, Liu R, et al. The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Reports, 2015, 11(1):137-148.
[63] Yang F, Deng X, Ma W, et al.The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biology, 2015, 16(1):1-17.
[64] Xiao T, Liu L, Li H, et al. Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα. Stem Cell Reports, 2015, 5(5):856-865.
[65] Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009, 11(3):228-234.
[66] Lauressergues D, Couzigou J M, San Clemente H, et al.Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015,520(7545):1-15.
[67] Pefanis E, Wang J, Rothschild G, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell, 2015, 161(4):774-789.
[68] Yakovchuk P, Goodrich J A, Kugel J F. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase Ⅱ and promoter DNA within assembled complexes. Proceedings of the National Academy of Sciences, 2009, 106(14):5569-5574.
[69] Rinn J L, Kertesz M, Wang J K, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129(7):1311-1323.
[70] Goodrich J A, Kugel J F. Non-coding-RNA regulators of RNA polymerase Ⅱ transcription. Nature Reviews Molecular Cell Biology, 2006, 7(8):612-616.
[71] Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature, 2008, 453(7194):539-543.
[72] Tam O H, Aravin A A, Stein P, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 2008, 453(7194):534-538.
[73] Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language?. Cell, 2011, 146(3):353-358.
[74] Paraskevopoulou M D, Georgakilas G, Kostoulas N, et al. DIANA-LncBase:experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Research, 2013, 41(D1):239-245.
[75] Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Research, 2010, 38(16):5366-5383.
[76] Wang K, Liu C Y, Zhou L Y, et al.APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Communications, 2015, 6(6779):1-11.
[77] Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
[78] Wang Y, Pang W J, Wei N, et al. Identification, stability and expression of Sirt1 antisense long non-coding RNA. Gene, 2014, 539(1):117-124.
[79] Deng L, Yang S B, Xu F F, et al. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. Journal of Experimental & Clinical Cancer Research, 2015, 34(18):1-10.
[80] Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene, 2011, 30(47):4750-4756.
[81] Wang K, Long B, Zhou L Y, et al.CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nature Communications, 2014, 5(3539):1-13.
[82] Tang Y, Jin X, Xiang Y, et al.The lncRNA MALAT1 protects the endothelium against ox-LDL-induced dysfunction via upregulating the expression of the miR-22-3p target genes CXCR2 and AKT. FEBS Letters, 2015, 589(20):3189-3196.
[83] Lu L, Luo F, Liu Y, et al.Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial-mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicology and Applied Pharmacology, 2015, 289(2):276-285.
[84] Hirata H, Hinoda Y, Shahryari V, et al. Long Noncoding RNA MALAT1 Promotes Aggressive Renal Cell Carcinoma through Ezh2 and Interacts with miR-205. Cancer Research, 2015, 75(7):1322-1331.
[85] Wang X, Li M, Wang Z, et al. Silencing of long noncoding rna malat1 by mir-101 and mir-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. Journal of Biological Chemistry, 2015, 290(7):3925-3935.
[86] Yan B, Yao J, Liu J Y, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circulation Research, 2015, 116(7):1143-1156.
[87] Tsang F H, Au S L, Wei L, et al. Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver International, 2015, 35(5):1597-1606.
[88] Gernapudi R, Wolfson B, Zhang Y, et al. miR-140 Promotes Expression of long non-coding RNA NEAT1 in Adipogenesis. Molecular and Cellular Biology, 2015,36(1):30-38.
[89] Wang P, Liu Y H, Yao Y l, et al. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cellular Signalling, 2015, 27(2):275-282.
[90] Cai H, Xue Y, Wang P, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget, 2015, 6(23):19759-19779.
[91] Wang K, Liu F, Zhou L Y, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circulation Research, 2014, 114(9):1377-1388.
[92] Cai X, Hagedorn C H, Cullen B R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 2004, 10(12):1957-1966.
[93] Liz J, Portela A, Soler M, et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Molecular Cell, 2014, 55(1):138-147.
[94] Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. The EMBO Journal, 2004, 23(20):4051-4060.
[95] Aravin A A, Hannon G J, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 2007, 318(5851):761-764.
[96] Wilusz J E, Freier S M, Spector D L. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell, 2008, 135(5):919-932.
[97] Ganesan G, Rao S M. A novel noncoding RNA processed by Drosha is restricted to nucleus in mouse. Rna, 2008, 14(7):1399-1410.
[98] Fejes-Toth K, Sotirova V, Sachidanandam R, et al. Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature, 2009, 457(7232):1028-1032.
[99] Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs:functional surprises from the RNA world. Genes & Development, 2009, 23(13):1494-1504.
[100] Ogawa Y, Sun B K, Lee J T. Intersection of the RNA interference and X-inactivation pathways. Science, 2008, 320(5881):1336-1341.
[101] Xiao T, Liu L, Li H, et al. Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα. Stem Cell Reports, 2015, 5(5):856-865.
[102] Yang F, Zhang L, Huo X S, et al. Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 2011, 54(5):1679-1689.
[103] Zhao X Y, Li S, Wang G X, et al. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Molecular Cell, 2014, 55(3):372-382.
[104] Ⅱott N E, Heward J A, Roux B, et al.Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nature Communications, 2014, 5(3979):1-13.
[105] Yu Y, Fuscoe J C, Zhao C, et al.A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nature Communications, 2014, 5(3230):1-11.
[106] Sun K, Zhao Y, Wang H, et al.Sebnif:An Integrated Bioinformatics Pipeline for the Identification of Novel Large Intergenic Noncoding RNAs (lincRNAs)-Application in Human Skeletal Muscle Cells. PloS one, 2014, 9(1):1-9.
[107] Divoux A, Karastergiou K, Xie H, et al. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity, 2014, 22(8):1781-1785.
[108] Sun L, Goff L A, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proceedings of the National Academy of Sciences, 2013, 110(9):3387-3392.
[109] Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabolism, 2015, 21(3):455-467.
[110] Leucci E, Patella F, Waage J, et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Scientific Reports, 2013, 3(2535):1-6.
[111] Imam H, Bano A S, Patel P, et al.The lncRNA NRON modulates HIV-1 replication in a NFAT-dependent manner and is differentially regulated by early and late viral proteins. Scientific Reports, 2015, 5(8639):1-10.
[112] Krol J, Krol I, Alvarez C P P, et al.A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nature Communications, 2015, 6(7305):1-13.
[113] Spurlock Ⅲ C F, Tossberg J T, Guo Y, et al.Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nature Communications, 2015, 6(6932):1-12.
[114] White N M, Cabanski C R, Silva-Fisher J M, et al.Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol, 2014, 15(8):1-16.
[115] Iyer M K, Niknafs Y S, Malik R, et al.The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 2015,doi:10.1038/ng.3192.
[116] Imamura K, Imamachi N, Akizuki G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Molecular Cell, 2014, 53(3):393-406.
[117] Yang F, Yi F, Han X, et al. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Letters, 2013, 587(19):3175-3181.
[118] Lai M C, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Medical Oncology, 2012, 29(3):1810-1816.
[119] Liu J H, Chen G, Dang Y W, et al. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pacific journal of cancer prevention:APJCP, 2013, 15(7):2971-2977.
[120] Arase M, Horiguchi K, Ehata S, et al. Transforming growth factor-β-induced lncRNA-Smad7 inhibits apoptosis of mouse breast cancer JygMC (A) cells. Cancer Science, 2014, 105(8):974-982.
[121] Luo M, Li Z, Wang W, et al. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Letters, 2013, 333(2):213-221.
[122] Krawczyk M, Emerson B M. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. Elife, 2014, doi:org/10.7554/eLife.01776.001.
[123] Prensner J R, Mehra R, Chinnaiyan A M, et al.SChLAP1:a newly validated lncRNA biomarker for aggressive prostate cancer. RNA & DISEASE, 2015, 2(2):1-4.
[124] Mehra R, Shi Y, Udager A M, et al. A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia, 2014, 16(12):1121-1127.
[125] Sahu A, Iyer M K, Prensner J R, et al. The role of long noncoding RNA SChLAP1 in prostate cancer. Cancer Research, 2014, 74(19 Supplement):541-541.
[126] Malik R, Patel L, Prensner J R, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Molecular Cancer Research, 2014, 12(8):1081-1087.
[127] Chakravarty D, Sboner A, Nair S S, et al.The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nature Communications, 2014, 5(5383):1-16.
[128] Prensner J R, Feng F Y C. The role of the PCAT-1 lncRNA in prostate cancer tumorigenesis. RNA & Disease, 2015, 2(1):900-908.
[129] Prensner J R, Chen W, Han S, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia, 2014, 16(11):900-908.
[130] Zhu M, Chen Q, Liu X, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS Journal, 2014, 281(16):3766-3775.
[131] Salameh A, Lee A K, Cardó-Vila M, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proceedings of the National Academy of Sciences, 2015, 112(27):8403-8408.
[132] Li L, Dang Q, Xie H, et al.Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget, 2015, 6(16):14179-14190.
[133] Zhang A, Zhao J C, Kim J, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Reports, 2015, 13(1):209-221.
[134] Liu Y, Zhang R, Qiu F, et al. Construction of a lncRNA-PCG bipartite network and identification of cancer-related lncRNAs:a case study in prostate cancer. Molecular Bio Systems, 2015, 11(2):384-393.
[135] Isin M, Uysaler E, Özgür E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Frontiers in Genetics, 2015, 6(168):1-5.
[136] Wang L, Han S, Jin G, et al. Linc00963:A novel, long non-coding RNA involved in the transition of prostate cancer from androgen-dependence to androgen-independence. International Journal of Oncology, 2014, 44(6):2041-2049.
[137] Richards E, Zhang G, Permuth-Wey J, et al. Identification of TGFβ-regulated long noncoding RNAs in mammary epithelia:lncRNA-HIT mediated TGFβ-induced EMT and breast cancer metastasis. Cancer Research, 2015, 75(15 Supplement):154-154.
[138] Feng FY, Ma T, Speers C, et al. Abstract PD6-1:The long noncoding RNA M41 promotes aggressiveness and tamoxifen resistance in ER-positive breast cancers. Cancer Research, 2015, 75(9):1-6.
[139] Xing Z, Park P K, Lin C, et al.LncRNA BCAR4 wires up signaling transduction in breast cancer. RNA Biology, 2015, 12(7):681-689.
[140] Shi Y, Li J, Liu Y, et al. The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Molecular Cancer, 2015, 14(51):1-13
[141] Koirala P, Mo Y Y. LncRNA AK023948 promotes breast tumorigenesis by enhancing AKT phosphorylation. Cancer Research, 2015, 75(15 Supplement):155-155.
[142] Xue X, Yang Y, Zhang A, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene, 2016,35(21):2746-2755.
[143] Zhou M, Hou Y, Yang G, et al. LncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells, 2015, 34(1):55-66.
[144] Shi S, Wang L, Yu B, et al.LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget, 2015, 6(13):11652-11663.
[145] Zhuang J, Lu Q, Shen B, et al.TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Scientific Reports, 2015, 5(11924):1-13.
[146] Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS Journal, 2014, 281(7):1750-1758.
[147] Berrondo C, Flax J, Messing E M, et al. The long non-coding RNA HOTAIR affects exosome-mediated bladder cancer progression. Cancer Research, 2015, 75(15 Supplement):152-152.
[148] Li S, Yu Z, Li F, et al.The YAP1 Oncogene Contributes to Bladder Cancer Cell Proliferation and Migration by Regulating the H19 Long Noncoding RNA. In:Urologic Oncology:Seminars and Original Investigations; 2015:Elsevier, 2015, 33(427):1-10.
[149] Tan J, Qiu K, Li M, et al. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Letters, 2015, 589(20):3175-3181.
[150] Iguchi T, Uchi R, Nambara S, et al. A long noncoding RNA, lncRNA-ATB, is involved in the progression and prognosis of colorectal cancer. Anticancer Research, 2015, 35(3):1385-1388.
[151] Zheng H T, Shi D B, Wang Y W, et al.High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. International Journal of Clinical and Experimental Pathology, 2014, 7(6):3174-3181.
[152] Ma Y, Yang Y, Wang F, et al.Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut, 2016,65(9):1494-1504.
[153] Shi D, Zheng H, Zhuo C, et al. Low expression of novel lncRNA RP11-462C24. 1 suggests a biomarker of poor prognosis in colorectal cancer. Medical Oncology, 2014, 31(7):1-9.
[154] Yin D, He X, Zhang E, et al. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Medical Oncology, 2014, 31(11):1-8.
[155] Yang Y, Li H, Hou S, et al.The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 2013, 5(8):1-12.
[156] Thai P, Statt S, Chen C H, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. American Journal of Respiratory Cell and Molecular Biology, 2013, 49(2):204-211.
[157] Shi X, Sun M, Liu H, et al.A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Molecular Carcinogenesis, 2013, 54(1):1-12.
[158] Qiu M, Xu Y, Yang X, et al. CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumor Biology, 2014, 35(6):5375-5380.
[159] Fan M, Li X, Jiang W, et al. A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Experimental and Therapeutic Medicine, 2013, 5(4):1143-1146.
[160] Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS Journal, 2012, 279(17):3159-3165.
[161] Li H, Yu B, Li J, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget, 2014, 5(8):2318-2329.
[162] Sun W, Wu Y, Yu X, et al. Decreased expression of long noncoding RNA AC096655. 1-002 in gastric cancer and its clinical significance. Tumor Biology, 2013, 34(5):2697-2701.
[163] Sun M, Xia R, Jin F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumor Biology, 2014, 35(2):1065-1073.
[164] Zhao Y, Guo Q, Chen J, et al. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer:a clinical and in vitro investigation. Oncology Reports, 2014, 31(1):358-364.
[165] Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 2013, 32(13):1616-1625.
[166] Ma C, Nong K, Zhu H, et al. H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumor Biology, 2014, 35(9):9163-9169.
[167] Wang Y, He L, Du Y, et al. The Long Noncoding RNA lncTCF7 Promotes Self-Renewal of Human Liver Cancer Stem Cells through Activation of Wnt Signaling. Cell Stem Cell, 2015, 16(4):413-425.
[168] Tsang F H, Au S L, Wei L, et al. HOTTIP, an oncogenic long non-coding RNA, is frequently up-regulated in hepatocellular carcinoma and is negatively regulated by tumor suppressive microRNA miR-125b. Cancer Research, 2015, 75(15 Supplement):145-145.

[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[3] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[4] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[5] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[6] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[7] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[8] 郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.
[9] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[10] 胡富,李谦,朱本伟,宁利敏,姚忠,孙芸,杜昱光. 石莼多糖裂解酶的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 104-113.
[11] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[12] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[13] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[14] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[15] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.