Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (2): 101-108    DOI: 10.13523/j.cb.20160215
综述     
植物寄生线虫效应蛋白功能分析方法的研究进展
扈丽丽1,2, 卓侃1,2, 林柏荣1,2, 廖金铃1,2,3
1. 华南农业大学植物线虫研究室 广州 510642;
2. 广东省微生物信号与作物病害防控重点实验室 广州 510642;
3. 广东生态工程职业学院 广州 510520
The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode
HU Li-li1,2, ZHUO Kan1,2, LIN Bo-rong1,2, LIAO Jin-ling1,2,3
1. Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China;
2. Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, China;
3. Guangdong Vocational College of Ecological Engineering, Guangzhou 510520, China
 全文: PDF(434 KB)   HTML
摘要:

植物寄生线虫在侵染寄主过程中分泌许多与寄生相关的蛋白,这一类蛋白称为效应蛋白,这些效应蛋白在植物细胞内发挥各种作用,从而有利于线虫侵染、寄生和生长发育。研究这些效应蛋白的功能对于掌握线虫侵染植物的分子机理非常重要,也是寻找新的植物线虫病害防治方法的理论基础。对目前应用于研究植物寄生线虫效应蛋白功能的主要方法进行了概述。

关键词: 植物寄生线虫植物线虫病害效应蛋白功能研究    
Abstract:

Plant-parasitic nematodes secreted numerous effectors during infection and parasitism stages. These effectors play various roles within the plant cells, facilitating growth and development of nematodes. Functional analysis of effector proteins is important to understand the interactions between nematodes and hosts, which will provide the scientific foundation for the new nematode control strategy. The main methods used in function analysis of effectors from plant-parasitic nematodes were summarized.

Key words: Plant nematode diseases    Function analysis    Effectors    Plant-parasitic nematodes
收稿日期: 2015-07-29 出版日期: 2015-12-09
ZTFLH:  Q948.12  
基金资助:

国家重点基础研究发展计划(2013CB127501)、国家自然科学基金(31171824,31471750,31401716)、广州市珠江科技新星专项(2014J2200069)资助项目

通讯作者: 廖金铃     E-mail: jlliao@scau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
扈丽丽
卓侃
林柏荣
廖金铃

引用本文:

扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.

HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode. China Biotechnology, 2016, 36(2): 101-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160215        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I2/101

[1] Decraemer W A. Ectoparasitic nematodes. In:Plant Nematology. Perry R N, Moens M. Wallingford,Oxfordshire:CAB International Journal for Parasitology,2006.153-184.
[2] Nicol J M,Turner S J,Coyne D L,et al. Current nematode threats to world agriculture. In:Jones J T,Gheysen G,Fenoll C.Genomics and Molecular Genetics of Plant-Nematode Interactions. Heidelberg:Springer,2011. 21-44.
[3] Jones J T,Haegeman A,Danchin E G J,et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology,2013,14(9):946-961.
[4] 冯志新. 植物线虫学. 北京:中国农业出版社,2001. 192-194. Feng Z X. Plant Nematology. Beijing:China Agriculture Press,2001. 192-194.
[5] Rosso M,Hussey R S,Davis E L,et al. Nematode effector proteins:targets and functions in plant parasitism. In:Francis Martin,Sophien Kamoun.Effectors in Plant-Microbe Interactions.Heidelberg:Springer,2012. 327-354.
[6] Davis E L,Hussey R S,Mitchum M G,et al. Parasitism proteins in nematode-plant interactions. Current Opinion Plant Biology,2008,11(4):360-366.
[7] Davis E L,Hussey R S,Baum T J,et al. Nematode parasitism genes. Annual Review Phytopathology,2000,38:365-396.
[8] Hogenhout S A,Van der Hoorn R A,Terauchi R,et al. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions,2009,22(2):115-122.
[9] Kvitko B H,Park D H,Velásquez A C,et al. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type Ⅲ secretion effector genes reveal functional overlap among effectors. PLoS Pathog,2009,5(4):1-16.
[10] Smant G,Stokkermans J W G,Yan Y,et al. Endogenous cellulases in animals:Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. PNAS,1998,95:4906-4911.
[11] Quentin M,Abad P,Favery B. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci,2013,4(53):1-7.
[12] Lilley C J,Bakhetia M,Charlton W L,et al. Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology,2007,8(5):701-711.
[13] Bakhetia M,Charlton W,Atkinson H J,et al. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. MPMI,2005,18(10):1099-1166.
[14] Fire A,Xu S Q, Montgomery M K,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(19):806-810.
[15] Vanholme B,Thuyne W V,Vanhouteghem K,et al. Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode Heterodera schachtii. Molecular Plant Pathology,2007,8(3):267-278.
[16] Gleason C A,Liu Q L,Williamson V M. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. MPMI,2008,21(5):576-585..
[17] Haegeman A,Vanholme B,Gheysen G. Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Mol Plant Pathol,2009,10(3):389-401.
[18] Hu L L,Cui R Q,Sun L H,et al. Molecular and biochemical characterization of the β-1,4-endoglucanase gene Mj-eng-3 in the root-knot nematode Meloidogyne javanica. Experimental Parasitology,2013,135(1):15-23.
[19] Li X D,Zhuo K,Luo M,et al. Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus. Exp Parasitol,2011,128(2):121-126.
[20] Lilley C J,Goodchild S A,Atkinson H J,et al. Cloning and characterisation of a Heterodera glycines aminopeptidase cDNA. Int J Parasitol,2005,35(14):1577-1585.
[21] Rosso M,Dubrana M P,Cimbolini N,et al. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. MPMI,2005,18(7):615-620.
[22] Bakhetia M,Urwin P E,Atkinson H J. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of heterodera glycines required for initial interactions with the host. MPMI,2007,20(3):306-312.
[23] Urwin P E,Lilley C J,Atkinson H J. Ingestion of double-stranded RNA by preparasitic juvenile Cyst nematodes leads to RNA interference. MPMI,2002,15(8):747-752.
[24] Chen Q,Rehman S,Smant G,et al. Functional analysis of pathogenicity proteins of the potato Cyst nematode Globodera rostochiensis using RNAi. MPMI,2005,18(7):621-625.
[25] Shingles J,Lilley C J,Atkinson H J,et al. Meloidogyne incognita:molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol,2007,115(2):114-120.
[26] Huang G,Allen R,Davis E L,et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proceedings of the National Academy of Sciences,2006,103(39):14302-14306.
[27] Rehman S,Postma W,Tytgat T,et al. A secreted SPRY domain-containing protein(SPRYSEC) from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NB-LRR protein from a susceptible tomato. MPMI,2009,22(3):330-340.
[28] Fairbairn D J,Cavallaro A S,Bernard M,et al. Host-delivered RNAi:an effective strategy to silence genes in plant parasitic nematodes. Planta,2007,226(6):1525-1533.
[29] Dubreuil G,Magliano M,Dubrana M P,et al. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. Journal of Experimental Botany,2009,60(14):4041-4050.
[30] Lin B R,Zhuo K,Wu P,et al. A novel effector protein,MJ-NULG1a,targeted to giant cell nuclei plays a role in Meloidogyne javanica parasitism. MPMI,2013,26(1):55-66.
[31] Valentine T A,Randall E,Wypijewski K,et al. Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnol J,2007,5(6):827-834.
[32] Hewezi T,Howe P,Maier T R,et al. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase:cooperative cell wall modification during parasitism. Plant Cell,2008,20:3080-3093.
[33] Hewezi T,Howe P J,Maier T R,et al. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol,2010,152(2):968-984.
[34] Iberkleid I,Vieira P,de Almeida Engler J,et al. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One,2013,8(5):1-14.
[35] Lee C,Chronis D,Kenning C,et al. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol, 2011,155(2):866-880.
[36] Xue B Y,Hamamouch N,Li C Y,et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology,2013,103(2):175-181.
[37] Haegeman A,Mantelin S,Jones J T,et al. Functional roles of effectors of plant-parasitic nematodes. Gene,2012,492:19-31.
[38] Endo B Y. Feeding plug formation in soybean roots infected with the soy bean cyst nematode Heterodera glycines. J Ultrastruct Res,1978,72:349-366.
[39] Semblat J,Rosso M,Hussey R S,et al. Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. MPMI,2001,14(1):72-79.
[40] Bellafiore S,Shen Z X,Rosso M,et al. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog,2008,4(10):1-12.
[41] Jones J T,Smant G,Blok V C. SXP/RAL-2 proteins of the potato cyst nematode Globodera rostochiensis:secreted proteins of the hypodermis and amphids. Nematology,2000,2:887-893.
[42] Cheng X,Xiang Y,Xie H,et al. Molecular characterization and functions of fatty acid and retinoid binding protein gene(Ab-far-1) in Aphelenchoides besseyi. PLoS One,2013,8(6):1-9.
[43] Ledger T N,Jaubert S,Bosselut N,et al. Characterization of a new beta-1,4-endoglucanase gene from the root-knot nematode Meloidogyne incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases. Gene,2006,382:121-128.
[44] Huang G Z,Dong R H,Allen R,et al. Developmental expression and molecular analysis of two Meloidogyne incognita pectate lyase genes. Int J Parasitol,2005,35(6):685-692.
[45] Long H B,Peng H,Huang W K,et al. Identification and molecular characterization of a new β-1,4-endoglucanase gene(Ha-eng-1a) in the cereal cyst nematode Heterodera avenae. European Journal of Plant Pathology,2012,134(2):391-400.
[46] Chronis D,Chen S Y,Lu S W,et al. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensisis cleaved in plant to promote plant parasitism. The Plant Journal,2013,74(2):185-196.
[47] Hamamouch N,Li C Y,Hewezi T,et al. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. Journal of Experimental Botany,2012,63(10):3683-3695.
[48] Hewezi T,Juvale P S,Piya S,et al. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis. Plant Cell,2015,27(3):891-907.
[49] Jaouannet M,Perfus-Barbeoch L,Deleury E,et al. A root-knot nematode-secreted protein is injected into giant cells and targeted to the nuclei. New Phytologist,2012,194(4):924-931.
[50] Lee C,Chronis D,Kenning C,et al. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiology,2010,155(2):866-880.
[51] Zhang L,Davies L J,Elling A A. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. Mol Plant Pathol,2015,16(1):48-60.
[52] Jaouannet M,Magliano M,Arguel M J,et al. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. MPMI,2013,26(1):97-105.
[53] 李先昆,聂智毅,曾日中,酵母双杂交技术研究与应用进展. 安徽农业科学,2009,37:2867-2869. Li X K,Nie Z Y,Zeng R Z. Research and applification of yeast two hybrid technology. An Hui Agricultural Science,2009,37:2867-2869.
[54] Ali M A,Wieczorek K,Kreil D P,et al. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One,2014,9(7):1-17.
[55] Woo M O,Beard H,MacDonald M H,et al. Manipulation of two alpha-endo-beta-1,4-glucanase genes,AtCel6 and GmCel7,reduces susceptibility to Heterodera glycines in soybean roots. Mol Plant Pathol,2014,15(9):927-934.
[56] Huang G Z,Dong R H,Allen R,et al. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. MPMI,2006,19(5):463-470.
[57] Jones J D G,Dangl J L. The plant immune system. Nature,2006,444:323-329.
[58] Doyle E A,Lambert K N. Meloidogyne javanica chorismate mutase 1 alters plant cell development. MPMI,2003,16(2):123-131.
[59] Sadia B,Terry L N,Lambert K N. A chorismate mutase from the soybean Cyst nematode Heterodera glycines shows polymorphisms that correlate with Virulence. MPMI,2003,16(5):439-446.
[60] Barcala M,Garcia A,Cabrera J,et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J,2010,61:698-712.
[61] Damiani I,Baldacci-Cresp F,Hopkins J,et al. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol,2012,194:511-522.
[62] Jammes F,Lecomte P,de Almeida-Engler J,et al. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J,2005,44:447-458.
[63] Jaubert S,Milac A L,Petrescu A J,et al. In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode. MPMI,2005,18(12):1277-1284.
[64] Chen S Y,Chronis D,Wang X H. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI. Plant Signaling & Behavior,2013,8:1-4.
[65] Sacco M A,Koropacka K,Grenier E, et al. The Cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathogens,2009,5(8):1-14.
[66] Postma W J,Slootweg E J,Rehman S,et al. The Effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiology,2012,160(2):944-954.
[67] Teillet A,Dybal K,Kerry B R,et al. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS One,2013,8(4):1-11.
[68] Ji H,Gheysen G,Denil S,et al. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany,2013,64(12):3885-3898.
[69] Abad P,Gouzy J,Aury J M,et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology,2008,26(8):909-915.
[70] Kikuchi T,Cotton J A,Dalzell J J,et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog,2011,7(9):1-17.
[71] Opperman C H,Bird D M,Williamson V M, et al. Sequence and genetic map of Meloidogyne hapla:A compact nematode genome for plant parasitism. Proc Natl Acad Sci USA,2008,105(39):14802-14807.

[1] 方雪瑶,胡龙华,杭亚平,俞凤,陈艳慧,钟桥石. 铜绿假单胞菌Ⅵ型分泌系统的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 88-93.
[2] 徐安毕, 黄来强. 效应蛋白LepB的表达,纯化及其亚克隆片段的结晶研究[J]. 中国生物工程杂志, 2014, 34(5): 1-5.
[3] 徐安毕, 黄来强. SidK-VatA蛋白复合物的表达和纯化[J]. 中国生物工程杂志, 2014, 34(06): 1-6.
[4] 黄勇,张晓楠,王涛,王丽,关路媛,陈南春,陈苏民. 利用双启动子表达载体pDH2-YggG-Ptac-Era研究E. coli Era和YggG 蛋白间的相互关系[J]. 中国生物工程杂志, 2007, 27(3): 12-18.
[5] 马大龙. 我国人类后基因组研究的上、中、下游合作战略初探[J]. 中国生物工程杂志, 1999, 19(1): 6-7.
[6] A.M.Maxam, W.Gilbert, 由雪娟, 程振起. DNA5′端~(32)P标记方法[J]. 中国生物工程杂志, 1982, 2(2): 41-43.