Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 78-84    DOI: 10.13523/j.cb.2110043
综述     
三维基因组学在动物遗传育种中的研究进展*
陈羿何1,李欣淼1,彭巍2,雷初朝1,赵黄青1,张子敬3,刘贤4,黄永震1,**()
1 西北农林科技大学动物科技学院 杨凌 712100
2 青海大学青海省畜牧兽医科学院 西宁 810016
3 河南省农业科学院畜牧兽医研究所 郑州 450002
4 河南省畜牧总站 郑州 450008
Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding
CHEN Yi-he1,LI Xin-miao1,PENG Wei2,LEI Chu-zhao1,ZHAO Huang-qing1,ZHANG Zi-jing3,LIU Xian4,HUANG Yong-zhen1,**()
1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
2 Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
3 Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
4 Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China
 全文: PDF(565 KB)   HTML
摘要:

三维基因组学是近年兴起的研究基因组三维空间和结构的学科,是在基因组序列、基因结构及其调控元件的基础上对基因组序列在细胞核内的三维空间结构,及其对基因复制、转录、修复和调控等生物过程中的功能进行的研究。随着高通量测序技术的出现和改进,三维基因组学相关研究也得到快速发展。重点介绍三维基因组的发展历程、研究技术、结构层次,并总结近年来三维基因组学在动物遗传育种方面的应用。

关键词: 三维基因组染色质空间结构动物遗传育种    
Abstract:

Three-dimensional genomics is a newly developed subject that studies the three-dimensional space and structure of genome. Based on considering genome sequence, gene structure and its regulatory elements, it studies the functions of gene replication, transcription, repair and regulation in biological processes and the three-dimensional structure of genome sequence in the nucleus. With the emergence and improvement of high-throughput sequencing technology, the research of three-dimensional genomics has developed rapidly. This paper focuses on the development process, research technology and structural level of three-dimensional genomics, and summarizes the application of three-dimensional genomics in animal genetics and breeding in recent years.

Key words: Three-dimensional genome    Chromatin spatial structure    Animal genetics and breeding
收稿日期: 2021-10-27 出版日期: 2022-05-05
ZTFLH:  Q812  
基金资助: * 财政部和农业农村部国家现代农业产业技术体系(CARS-37);青海省科技计划(2021-ZJ-736);河南省肉牛产业技术体系(S2013-08)
通讯作者: 黄永震     E-mail: hyzsci@nwafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈羿何
李欣淼
彭巍
雷初朝
赵黄青
张子敬
刘贤
黄永震

引用本文:

陈羿何,李欣淼,彭巍,雷初朝,赵黄青,张子敬,刘贤,黄永震. 三维基因组学在动物遗传育种中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 78-84.

CHEN Yi-he,LI Xin-miao,PENG Wei,LEI Chu-zhao,ZHAO Huang-qing,ZHANG Zi-jing,LIU Xian,HUANG Yong-zhen. Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding. China Biotechnology, 2022, 42(4): 78-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2110043        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/78

[1] Green E D, Watson J D, Collins F S. Human Genome Project: twenty-five years of big biology. Nature, 2015, 526(7571): 29-31.
doi: 10.1038/526029a
[2] Dunham I, Kundaje A, Aldred S F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489 (7414): 57-74.
doi: 10.1038/nature11247
[3] Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(14): 4381-4385.
[4] Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science, 2002, 295(5558): 1306-1311.
pmid: 11847345
[5] Dekker J. The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nature Methods, 2006, 3 (1): 17-21.
pmid: 16369547
[6] Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 2006, 38 (11): 1348-1354.
doi: 10.1038/ng1896
[7] Dostie J, Richmond T A, Arnaout R A, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Research, 2006, 16(10): 1299-1309.
pmid: 16954542
[8] Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
doi: 10.1126/science.1181369 pmid: 19815776
[9] Nagano T, Lubling Y, Stevens T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502 (7469): 59-64.
doi: 10.1038/nature12593
[10] Liu C. In situ hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods in Molecular Biology (Clifton, N J), 2017, 1629: 155-166.
[11] Lin D, Hong P, Zhang S, et al. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nature Genetics, 2018, 50 (5): 754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467
[12] Fullwood M J, Liu M H, Pan Y F, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 2009, 462(7269): 58-64.
doi: 10.1038/nature08497
[13] Li G L, Fullwood M J, Xu H, et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biology, 2010, 11(2): R22.
doi: 10.1186/gb-2010-11-2-r22
[14] 张富涵, 沈宗毅, 喻长远, 等. 三维基因组学研究进展. 生物工程学报, 2020, 36(12): 2791-2812.
Zhang F H, Shen Z Y, Yu C Y, et al. Advances in three-dimensional genomics. Chinese Journal of Biotechnology, 2020, 36(12): 2791-2812.
[15] Die stofflichen grundlagen der vererbung im organischen Reich. Nature, 1906, 75(1935): 98-99.
doi: 10.1038/075098a0
[16] Cremer T, Cremer M. Chromosome territories. Cold Spring Harbor Perspectives in Biology, 2010, 2(3): a003889.
[17] Su J H, Zheng P, Kinrot S S, et al. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell, 2020, 182(6): 1641-1659.e26.
doi: 10.1016/j.cell.2020.07.032
[18] Branco M R, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biology, 2006, 4(5): e138.
doi: 10.1371/journal.pbio.0040138
[19] Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
doi: 10.1126/science.1181369 pmid: 19815776
[20] Dixon J R, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature, 2015, 518 (7539): 331-336.
doi: 10.1038/nature14222
[21] 罗扶农, 何梦楠, 唐茜子, 等. 哺乳动物染色质三维结构单元的特征及其相互关系. 农业生物技术学报, 2019, 27(8): 1485-1497.
Luo F N, He M N, Tang Q Z, et al. The characteristics and interrelation of three-dimensional structural units of chromatin in mammals. Journal of Agricultural Biotechnology, 2019, 27(8): 1485-1497.
[22] Nora E P, Lajoie B R, Schulz E G, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485 (7398): 381-385.
doi: 10.1038/nature11049
[23] Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485 (7398): 376-380.
doi: 10.1038/nature11082
[24] Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398):376-380.
doi: 10.1038/nature11082
[25] Kaaij L J T, van der Weide R H, Ketting R F, et al. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Reports, 2018, 24(1): 1-10.e4.
doi: 10.1016/j.celrep.2018.06.003
[26] Zhou Z, Li M, Cheng H, et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 2018, 9: 2648.
doi: 10.1038/s41467-018-04868-4
[27] Dong Q L, Li N, Li X C, et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal: for Cell and Molecular Biology, 2018, 94(6): 1141-1156.
doi: 10.1111/tpj.13925
[28] Wang M, Wang P, Lin M, et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nature Plants, 2018, 4 (2): 90-97.
doi: 10.1038/s41477-017-0096-3
[29] Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Current Opinion in Cell Biology, 2013, 25(3): 387-394.
doi: 10.1016/j.ceb.2013.02.005 pmid: 23465541
[30] Sanyal A, Lajoie B R, Jain G, et al. The long-range interaction landscape of gene promoters. Nature, 2012, 489 (7414): 109-113.
doi: 10.1038/nature11279
[31] Pope B D, Ryba T, Dileep V, et al. Topologically associating domains are stable units of replication-timing regulation. Nature, 2014, 515 (7527): 402-405.
doi: 10.1038/nature13986
[32] Lupiáñez D G, Kraft K, Heinrich V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 2015, 161(5): 1012-1025.
doi: S0092-8674(15)00377-3 pmid: 25959774
[33] Li L, Lyu X W, Hou C H, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular Cell, 2015, 58(2): 216-231.
doi: 10.1016/j.molcel.2015.02.023 pmid: 25818644
[34] Despang A, Schöpflin R, Franke M, et al. Functional dissection of the Sox9-Kcnj 2 locus identifies nonessential and instructive roles of TAD architecture. Nature Genetics, 2019, 51 (8): 1263-127
doi: 10.1038/s41588-019-0466-z
[35] 答亮, 赵慕钧. 发育和癌症中染色质环结构变化. 生命的化学, 2002, 22(4): 329-331.
Da L, Zhao M J. Changes in chromatin ring structure in development and cancer. Chemistry of Life, 2002, 22(4): 329-331.
[36] Rao S S P, Huntley M H, Durand N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159(7): 1665-1680.
doi: 10.1016/j.cell.2014.11.021
[37] Zhao Y, Hou Y, Xu Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nature Communications, 2021, 12: 2217.
doi: 10.1038/s41467-021-22448-x
[38] Li F F, Wang D Y, Song R G, et al. The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos. Genome Biology, 2020, 21: 203.
doi: 10.1186/s13059-020-02095-z
[39] Tian X M, Li R, Fu W W, et al. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Science China Life Sciences, 2020, 63(5): 750-763.
doi: 10.1007/s11427-019-9551-7
[40] Jin L, Tang Q, Hu S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications, 2021, 12: 3715.
doi: 10.1038/s41467-021-23560-8
[41] Ou J T. DNA molecular markers and animalsbreeding. Journal of Southwest University for Nationalities(Natural Sciens Edition), 2002, 28(4):524-529.
[42] 夏文财, 鲁绍雄. 牛遗传图谱的研究进展. 吉林畜牧兽医, 2008, 29(5): 14-16.
Xia W C, Lu S X. Progress of research on genetic map of cattle. Jilin Animal Husbandry and Veterinary Medicine, 2008, 29(5): 14-16.
[43] Lee D, Cho M, Hong W Y, et al. Evolutionary analyses of hanwoo (Korean cattle)-specific single-nucleotide polymorphisms and genes using whole-genome resequencing data of a hanwoo population. Molecules and Cells, 2016, 39(9): 692-698.
doi: 10.14348/molcells.2016.0148
[44] Sasago N, Abe T, Sakuma H, et al. Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 2017, 88(1): 33-44.
doi: 10.1111/asj.12595 pmid: 27112906
[45] Kim S J, Ka S, Ha J W, et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama. BMC Genomics, 2017, 18(1): 371.
doi: 10.1186/s12864-017-3742-2
[46] 曹修凯, 程杰, 王晓刚, 等. 动物染色质三维基因组及转录调控研究进展. 中国牛业科学, 2020, 46(3): 25-31, 83.
Cao X K, Cheng J, Wang X G, et al. Proceedings of 3D genome of animal chromatin and its transcriptional regulation. China Cattle Science, 2020, 46(3): 25-31, 83.
[47] Crawford A M, Dodds K G, Ede A J, et al. An autosomal genetic linkage map of the sheep genome. Genetics, 1995, 140(2): 703-724.
doi: 10.1093/genetics/140.2.703 pmid: 7498748
[48] de Gortari M J, Freking B A, Cuthbertson R P, et al. A second-generation linkage map of the sheep genome. Mammalian Genome, 1998, 9(3): 204-209.
pmid: 9501303
[49] Bickhart D M, Rosen B D, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 2017, 49(4): 643-650.
doi: 10.1038/ng.3802 pmid: 28263316
[50] Li X, Yang J, Shen M, et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 2020, 11: 2815.
doi: 10.1038/s41467-020-16485-1
[51] Du Z H, Zheng H, Huang B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547(7662): 232-235.
doi: 10.1038/nature23263
[52] Chen M, Zhu Q S, Li C, et al. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nature Communications, 2020, 11(1): 1813.
doi: 10.1038/s41467-020-15607-z pmid: 32286279
[53] Yang H B, Luan Y, Liu T T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature, 2020, 588(7837): 337-343.
doi: 10.1038/s41586-020-2962-9
[1] 张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.
[2] 刘佳萌,李雪莹,刘业学,王稳航,李庆刚,路福平,李玉. 微生物以5-氨基乙酰丙酸为唯一前体物合成血红素的研究进展*[J]. 中国生物工程杂志, 2022, 42(3): 99-109.
[3] 傅云扉,魏琦麟,袁明贵,康桦华,田雅,向蓉,徐志宏. 丁酸梭菌及产丁酸代谢改造*[J]. 中国生物工程杂志, 2022, 42(1/2): 37-45.
[4] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[5] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[6] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[7] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[8] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[9] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[10] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[11] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[12] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[13] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[14] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[15] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.