Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (4): 24-32    DOI: 10.13523/j.cb.2111034
综述     
CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*
张俊有1,2,王棨临1,2,刘倩1,2,漆思晗1,2,李春燕1,2,3,**()
1 北京航空航天大学医学科学与工程学院 大数据精准医疗高精尖创新中心 北京 100191
2 北京航空航天大学生物与医学工程学院 北京 100191
3 北京航空航天大学工业和信息化部大数据精准医疗重点实验室 北京 100191
Research Progress of CRISPR/Cas Gene Editing Technology in Enhancer Function Analysis and Identification
ZHANG Jun-you1,2,WANG Qi-lin1,2,LIU Qian1,2,QI Si-han1,2,LI Chun-yan1,2,3,**()
1 School of Engineering Medicine & Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
2 School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
3 Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology),Beihang University, Beijing 100191, China
 全文: PDF(1629 KB)   HTML
摘要:

增强子是生物体内重要的顺式基因表达调控元件,参与众多生物学过程,与癌症的发生发展及多种疾病的产生紧密相关。虽然基于生物信息学的方法可以对增强子进行鉴定和筛选,然而由于增强子与靶基因的位置和方向不确定,大大增加了深入研究增强子调控机制的难度。近年来,CRISPR/Cas技术的不断发展创新,为揭示和验证增强子的分子机制提供了可操作性。因此,在系统回顾CRISPR/Cas技术的发展过程及在生物学中的应用基础上,重点总结近年来CRISPR/Cas技术在增强子研究中的创新应用,包括不同CRISPR/Cas技术的作用原理及CRISPR/Cas技术如何编辑增强子等,以期为利用CRISPR/Cas技术研究增强子功能机制提供可行性参考。

关键词: CRISPR/Cas增强子超级增强子基因编辑    
Abstract:

Enhancers are essential cis-regulatory DNA elements, which are involved in many biological processes and closely associated with the initiation and progression of cancer and various human diseases. Although bioinformatics-based methods can identify and screen enhancers, the uncertainty in the orientation and distance between enhancers and target genes makes it difficult to study the functional mechanism of enhancers in-depth. Recently, the continuous development and innovation of CRISPR/Cas technology makes it applicable to the investigation and validation on the molecular mechanisms of enhancers. This article reviews the progression of CRISPR/Cas technology and its application in biology and focuses on the innovative applications of CRISPR/Cas technology in enhancer research in recent years (e.g., how CRISPR/Cas technology edits enhancers and the principles of different CRISPR/Cas technologies), aiming to provide a feasible reference for further study on the enhancer functional analysis.

Key words: CRISPR/Cas    Enhancer    Super enhancer    Gene editing
收稿日期: 2021-11-16 出版日期: 2022-05-05
ZTFLH:  Q812  
基金资助: 国家自然科学基金面上项目(82072499);国家自然科学基金青年科学基金(31801094)
通讯作者: 李春燕     E-mail: lichunyan@buaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张俊有
王棨临
刘倩
漆思晗
李春燕

引用本文:

张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.

ZHANG Jun-you,WANG Qi-lin,LIU Qian,QI Si-han,LI Chun-yan. Research Progress of CRISPR/Cas Gene Editing Technology in Enhancer Function Analysis and Identification. China Biotechnology, 2022, 42(4): 24-32.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111034        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I4/24

类型 亚型 特征蛋白质 目标序列 需要tracrRNA 主要来源 参考文献
1类 I A, B, C, D, E, F, U Cas3 dsDNA 细菌和古细菌 [22]
III A, B, C, D Cas10 ssRNA 细菌和古细菌
IV - Csf1 dsDNA 古细菌
2类 II A, B, C Cas9 dsDNA 细菌 [23]
V A, B, C, U Cas12 dsDNA 细菌和古细菌
VI A, B, C Cas13 ssRNA 细菌
表1  CRISPR/Cas系统的最新分类
图1  CRISPR/Cas9和CRISPR/dCas9系统用于编辑增强子
[1] Chen H, Li C Y, Peng X X, et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386-399.e12.
doi: S0092-8674(18)30307-6 pmid: 29625054
[2] Morton A R, Dogan-Artun N, Faber Z J, et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell, 2019, 179(6): 1330-1341.e13.
doi: 10.1016/j.cell.2019.10.039
[3] Hnisz D, Abraham B J, Lee T I, et al. Super-enhancers in the control of cell identity and disease. Cell, 2013, 155(4): 934-947.
doi: 10.1016/j.cell.2013.09.053
[4] Fredriksson N J, Ny L, Nilsson J A, et al. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nature Genetics, 2014, 46 (12): 1258-1263.
doi: 10.1038/ng.3141 pmid: 25383969
[5] Melton C, Reuter J A, Spacek D V, et al. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nature Genetics, 2015, 47 (7): 710-716.
doi: 10.1038/ng.3332
[6] Zhu S, Li W, Liu J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology, 2016, 34 (12): 1279-1286.
doi: 10.1038/nbt.3715
[7] Liu Y, Cao Z, Wang Y, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas 9 targeting of splice sites. Nature Biotechnology, 2018, 36 (12): 1203-1210.
doi: 10.1038/nbt.4283
[8] Benoist C, Chambon P. In vivo sequence requirements of the SV40 early promoter region. Nature, 1981, 290 (5804): 304-310.
doi: 10.1038/290304a0
[9] Spitz F, Furlong E E M. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics, 2012, 13 (9): 613-626.
doi: 10.1038/nrg3207
[10] Sur I, Taipale J. The role of enhancers in cancer. Nature Reviews Cancer, 2016, 16(8): 483-493.
doi: 10.1038/nrc.2016.62
[11] Nott A, Holtman I R, Coufal N G, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science, 2019, 366(6469): 1134-1139.
doi: 10.1126/science.aay0793
[12] Jun M K, Cannavò E, Crabtree G W, et al. Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron, 2019, 104(3): 471-487.e12.
doi: 10.1016/j.neuron.2019.09.014
[13] Sun Y Q, Zhou B, Mao F B, et al. HOXA 9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell, 2018, 34(4): 643-658.e5.
doi: 10.1016/j.ccell.2018.08.018
[14] Morcillo P, Rosen C, Dorsett D. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics, 1996, 144(3): 1143-1154.
doi: 10.1093/genetics/144.3.1143 pmid: 8913756
[15] Sun C B, Zhang X. Advance in the research on super-enhancer. Hereditas(Beijing), 2016, 38(12): 1056-1068.
[16] Arnold C D, Gerlach D, Stelzer C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 2013, 339(6123): 1074-1077.
doi: 10.1126/science.1232542
[17] Buenrostro J D, Giresi P G, Zaba L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 2013, 10 (12): 1213-1218.
doi: 10.1038/nmeth.2688 pmid: 24097267
[18] Visel A, Blow M J, Li Z, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009, 457(7231): 854-858.
doi: 10.1038/nature07730
[19] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 pmid: 3316184
[20] Mojica F J M, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2): 174-182.
doi: 10.1007/s00239-004-0046-3
[21] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
doi: 10.1126/science.1138140 pmid: 17379808
[22] Makarova K S, Zhang F, Koonin E V. SnapShot: class 1 CRISPR-cas systems. Cell, 2017, 168(5): 946-946.e1.
doi: S0092-8674(17)30196-4 pmid: 28235204
[23] Makarova K S, Zhang F, Koonin E V. SnapShot: class 2 CRISPR-cas systems. Cell, 2017, 168(1-2): 328-328.e1.
doi: S0092-8674(16)31754-8 pmid: 28086097
[24] Franic D, Dobrinic P, Korac P. Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/Cas9). Molecular and Experimental Biology in Medicine, 2019, 2(1): 1-9.
[25] Auer T O, Duroure K, de Cian A, et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014, 24(1): 142-153.
doi: 10.1101/gr.161638.113
[26] Ma Y W, Zhang L F, Huang X X. Genome modification by CRISPR/cas9. The FEBS Journal, 2014, 281(23): 5186-5193.
doi: 10.1111/febs.13110
[27] Liu X S, Wu H, Krzisch M, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell, 2018, 172(5): 979-992.e6.
doi: 10.1016/j.cell.2018.01.012
[28] Lowder L G, Zhang D W, Baltes N J, et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 2015, 169(2): 971-985.
doi: 10.1104/pp.15.00636 pmid: 26297141
[29] Gori J L, Hsu P D, Maeder M L, et al. Delivery and specificity of CRISPR-Cas 9 genome editing technologies for human gene therapy. Human Gene Therapy, 2015, 26(7): 443-451.
doi: 10.1089/hum.2015.074
[30] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829
[31] Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033
[32] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[33] Konermann S, Brigham M, Trevino A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536): 583-588.
doi: 10.1038/nature14136
[34] Korkmaz G, Lopes R, Ugalde A P, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 192-198.
doi: 10.1038/nbt.3450 pmid: 26751173
[35] Diao Y R, Li B, Meng Z P, et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Research, 2016, 26(3): 397-405.
doi: 10.1101/gr.197152.115
[36] Zhang X, Choi P S, Francis J M, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nature Genetics, 2016, 48(2): 176-182.
doi: 10.1038/ng.3470
[37] 郭晓龙, 张青峰, 野庆松, 等. 靶向ezrin增强子关键区的CRISPR/Cas9载体的构建. 生物学杂志, 2017, 34(6): 19-22.
Guo X L, Zhang Q F, Ye Q S, et al. Construction of CRISPR/Cas 9 vectors targeting to ezrin enhancer key region. Journal of Biology, 2017, 34(6): 19-22.
[38] Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3): 647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[39] Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 2008, 26: 677-704.
doi: 10.1146/annurev.immunol.26.021607.090331
[40] Chen L P, Han X. Anti-PD-1/PD-L 1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation, 2015, 125(9): 3384-3391.
doi: 10.1172/JCI80011
[41] Xu Y P, Wu Y C, Zhang S L, et al. A tumor-specific super-enhancer drives immune evasion by guiding synchronous expression of PD-L1 and PD-L2. Cell Reports, 2019, 29(11): 3435-3447.e4.
doi: 10.1016/j.celrep.2019.10.093
[42] Dao L T M, Galindo-Albarrán A O, Castro-Mondragon J A, et al. Genome-wide characterization of mammalian promoters with distal enhancer functions. Nature Genetics, 2017, 49(7): 1073-1081.
doi: 10.1038/ng.3884
[43] Diao Y, Fang R, Li B, et al. A tiling-deletion-based genetic screen for Cis-regulatory element identification in mammalian cells. Nature Methods, 2017, 14(6): 629-635.
doi: 10.1038/nmeth.4264
[44] Engreitz J M, Haines J E, Perez E M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 2016, 539(7629): 452-455.
doi: 10.1038/nature20149
[45] Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096
[46] Vanhille L, Griffon A, Maqbool M A, et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nature Communications, 2015, 6(1): 6905.
doi: 10.1038/ncomms7905
[47] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022
[48] Li Z, Zhang D, Xiong X, et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 2017, 3(12): 930-936.
doi: 10.1038/s41477-017-0046-0
[49] Gao X F, Tsang J C H, Gaba F, et al. Comparison of TALE designer transcription factors and the CRISPR/dCas 9 in regulation of gene expression by targeting enhancers. Nucleic Acids Research, 2014, 42(20): e155.
doi: 10.1093/nar/gku836
[50] Hilton I B, D’Ippolito A M, Vockley C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 2015, 33(5): 510-517.
doi: 10.1038/nbt.3199 pmid: 25849900
[51] Li K, Liu Y, Cao H, et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11(1): 485.
doi: 10.1038/s41467-020-14362-5
[52] Simeonov D R, Gowen B G, Boontanrart M, et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549(7670): 111-115.
doi: 10.1038/nature23875
[53] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981
[54] Jasenosky L D, Nambu A, Tsytsykova A V, et al. Identification of a distal locus enhancer element that controls cell type-specific TNF and LTA gene expression in human T cells. Journal of Immunology, 2020, 205(9): 2479-2488.
doi: 10.4049/jimmunol.1901311 pmid: 32978279
[55] Kearns N A, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nature Methods, 2015, 12(5): 401-403.
doi: 10.1038/nmeth.3325
[56] Fulco C P, Nasser J, Jones T R, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nature Genetics, 2019, 51(12): 1664-1669.
doi: 10.1038/s41588-019-0538-0
[57] Shalem O, Sanjana N E, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics, 2015, 16(5): 299-311.
doi: 10.1038/nrg3899 pmid: 25854182
[58] Whyte W A, Orlando D A, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013, 153(2): 307-319.
doi: 10.1016/j.cell.2013.03.035
[59] di Micco R, Fontanals-Cirera B, Low V, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Reports, 2014, 9(1): 234-247.
doi: 10.1016/j.celrep.2014.08.055
[60] Ing-Simmons E, Seitan V C, Faure A J, et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Research, 2015, 25(4): 504-513.
doi: 10.1101/gr.184986.114 pmid: 25677180
[61] Niederriter A R, Varshney A, Parker S C J, et al. Super enhancers in cancers, complex disease, and developmental disorders. Genes, 2015, 6(4): 1183-1200.
doi: 10.3390/genes6041183 pmid: 26569311
[62] Lovén J, Hoke H A, Lin C Y, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2): 320-334.
doi: 10.1016/j.cell.2013.03.036
[63] Mansour M R, Abraham B J, Anders L, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014, 346(6215): 1373-1377.
doi: 10.1126/science.1259037 pmid: 25394790
[64] Gröschel S, Sanders M A, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA 2 deregulation in leukemia. Cell, 2014, 157(2): 369-381.
doi: S0092-8674(14)00218-9 pmid: 24703711
[65] Wu Z Q, Mi Z Y. Research progress of super enhancer in cancer. Hereditas (Beijing), 2019, 41(1): 41-51.
[66] Yoshinaga M, Nakatsuka Y, Vandenbon A, et al. Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Reports, 2017, 19(8): 1614-1630.
doi: S2211-1247(17)30634-4 pmid: 28538180
[67] Yang R Y, Wu Y Y, Ming Y, et al. A super-enhancer maintains homeostatic expression of Regnase-1. Gene, 2018, 669: 35-41.
doi: 10.1016/j.gene.2018.05.052
[68] Ri K C, Kim J S, Kim C. Identification of Klf6-related super enhancer in human hepatoma (HepG2) cells by CRISPR technique. Genetics and Molecular Research, 2017, 16(4): gmr16039841.
[69] Ri K C, Kim K, Kong S, et al. The disruption of Klf6-related super-enhancer induces growth inhibition and apoptosis in human HepG2 cells. Genetics and Molecular Research, 2018, 17(1): gmr16039888.
[70] Ri K C, Kim C, Pak C, et al. The KLF6 super enhancer modulates cell proliferation via miR-1301 in human hepatoma cells. microRNA (Shariqah, United Arab Emirates), 2020, 9(1): 64-69.
[71] Salo P P, Havulinna A S, Tukiainen T, et al. Genome-wide association study implicates atrial natriuretic peptide rather than B-type natriuretic peptide in the regulation of blood pressure in the general population. Circulation Cardiovascular Genetics, 2017, 10(6): e001713.
doi: 10.1161/CIRCGENETICS.117.001713
[72] Man J C K, van Duijvenboden K, Krijger P H L, et al. Genetic dissection of a super enhancer controlling the nppa-nppb cluster in the heart. Circulation Research, 2021, 128(1): 115-129.
doi: 10.1161/CIRCRESAHA.120.317045
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[4] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[5] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[8] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[9] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[10] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[11] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[12] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[13] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[14] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[15] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.