Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 94-104    DOI: 10.13523/j.cb.2102012
综述     
毛蕊花糖苷的生物合成研究进展
翟君叶1,成旭1,孙泽敏2,李春3,吕波1,*()
1 北京理工大学化学与化工学院 北京 102488
2 北京理工大学生命学院 北京 100081
3 清华大学化学工程系 北京 100084
Current Advances in Biosynthesis of Acteoside
ZHAI Jun-ye1,CHENG Xu1,SUN Ze-min2,LI Chun3,LV Bo1,*()
1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
2 School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China
3 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(1635 KB)   HTML
摘要:

毛蕊花糖苷是由咖啡酸、羟基酪醇、葡萄糖和鼠李糖组成的苯乙醇苷类衍生物,广泛存在于多种天然药用植物中,具有抗炎、抗菌、抗病毒、抗肿瘤、抗氧化、镇痛、神经保护、改善性功能、免疫调节和改善细胞记忆等多方面的生物活性。然而,植物提取来源的毛蕊花糖苷存在含量低、环境污染问题,无法实现绿色可持续的规模化生产。利用合成生物学成功构建了一系列植物天然产物的微生物细胞工厂,为高效生产毛蕊花糖苷提供了新思路。综述了毛蕊花糖苷细胞工厂的研究现状,包括苯乙醇苷生物合成关键代谢途径解析、关键基因元件挖掘和优化、关键前体物的合成等方面,以期为毛蕊花糖苷的生物合成奠定基础。

关键词: 苯乙醇苷毛蕊花糖苷途径解析生物合成    
Abstract:

Acteoside is a natural product widely found in many plants, which is composed of caffeic acid, hydroxytyrosol, glucose and rhamnose, including anti-inflammatory, antibacterial, antiviral, anti-tumor, antioxidant, analgesic, neuroprotective, improving sexual function, immunomodulatory, and memory protective activities. However, traditional extraction of acteoside and its derivatives from plants have some problems such as low content, low extraction efficiency and environmental pollution.In recent years, the study of heterologous synthesis of plant natural products has been successfully constructed by the rapid development of synthetic biology, which provides a new idea for the efficient production of acteoside. The recent advances of acteoside cell factory which includes the key metabolic biosynthesis elucidations of phenylethanoid glycoside , mining and optimization of key gene components, synthesis of key precursors were summarized.

Key words: Phenylethanoid glycoside    Acteoside    Pathway analysis    Biosynthesis
收稿日期: 2021-02-08 出版日期: 2021-06-01
ZTFLH:  Q815  
通讯作者: 吕波     E-mail: lv-b@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
翟君叶
成旭
孙泽敏
李春
吕波

引用本文:

翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.

ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside. China Biotechnology, 2021, 41(5): 94-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102012        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/94

图1  毛蕊花糖苷的结构和含量分布
图2  毛蕊花糖苷的生物合成途径解析
物种 NCBI Accession
沙漠肉苁蓉Cistanche
deserticola[32]
SRR1779481、SRR1779494 PAL、4CL、HCT、CSE、CYP73A、CYP98A3
熟地黄Rehmannia
glutinosa Hairy Roots[17]
SRR5438036、SRR5438037、SRR5438042 PAL、C4H、C3H、4CL、TyDC、PPO、CuAO、HCT、ALDH、UGT
熟地黄Rehmannia
glutinosa Tuberous
Root[16]
SRR8196590、SRR8196591、SRR8196592、SRR8196593、SRR8196594、SRR8196595、SRR8196596、SRR8196597、SRR8196598、SRR8196599、SRR8196600、SRR8196601、SRR8196602、SRR8196603、SRR8196604、SRR8196605、SRR8196606、SRR8196607、SRR8196608、SRR8196609、SRR8196610、SRR8196611、SRR8196612、SRR8196613 PAL、C4H、C3H、4CL、PPO、DODC、CuAO、UGT、ALDH、HCT
Centranthera grandiflora[18] SRR9903027、SRR9903028、SRR9903029、SRR9903030、SRR9903031、SRR9903032、SRR9903033、SRR9903034、SRR9903035 PAL、C4H、C3H、CuAO、ALDH、4CL、UGT、TyDC、PPO、HCT
橄榄Olea europaea L.[24] SRR8606699、SRR8606701、SRR8446454、SRR8446455、SRR8446452、SRR8446453、SRR8446451 PAR、DODC、ALDH、PPO、CuAO
表1  苯乙醇苷转录组数据分析结果
[1] Tian X Y, Li M X, Lin T, et al. A review on the structure and pharmacological activity of phenylethanoid glycosides. European Journal of Medicinal Chemistry, 2021,209:112563.
doi: 10.1016/j.ejmech.2020.112563
[2] 薛景, 王英爱, 贾献慧, 等. 苯乙醇苷类化合物的分类及研究进展. 药学研究, 2018,37(5):282-290.
Xue J, Wang Y A, Jia X H, et al. Research progress of phenylethanoid glycosides. Journal of Pharmaceutical Research, 2018,37(5):282-290.
[3] 王向楠. 基于转录组测序的地黄毛蕊花糖苷生物合成相关酶基因的发掘与鉴定. 新乡: 河南师范大学, 2017.
Wang X N. Mining and identification of verbascoside biosynthesis associated genes based on transcriptome sequencing of Rehmannia glutinosa. Xinxiang: Henan Normal University, 2017.
[4] 于文娜, 张振凌, 李柯柯, 等. 鲜地黄花不同部位环烯醚萜苷类成分含量测定. 食品研究与开发, 2017,38(14):134-137.
Yu W N, Zhang Z L, Li K K, et al. Determination of the content of iridoid glycosidein from different parts of the fresh rehmanniae flowers. Food Research and Development, 2017,38(14):134-137.
[5] 曹馨元, 曹文龙, 陶锐, 等. HPLC法测定不同产地马先蒿属植物中的毛蕊花苷. 中成药, 2016,38(1):126-129.
Cao X Y, Cao W L, Tao R, et al. Determination of verbascoside in plants of Pedicularis L. from different growing areas by HPLC. Chinese Traditional Patent Medicine, 2016,38(1):126-129.
[6] 王谨涵, 李茂星, 曹馨元, 等. HPLC法同时测定马先蒿属6种植物中毛蕊花糖苷及桃叶珊瑚苷含量. 解放军药学学报, 2015,31(6):542-544.
Wang J H, Li M X, Cao X Y, et al. Simultaneous determination of verbascoside and aucubin in 6 medicinal plants of Pedicularis by HPLC. Pharmaceutical Journal of Chinese PLA, 2015,31(6):542-544.
[7] 许兵兵, 黄碧涛, 曾金祥, 等. 车前子及车前草中毛蕊花糖苷与异毛蕊花糖苷的含量比较. 中国实验方剂学杂志, 2016,22(18):64-67.
Xu B B, Huang B T, Zeng J X, et al. Comparison of contents of verbascoside and isoverbascoside in plantaginis semen and plantaginis herba. Chinese Journal of Experimental Traditional Medical Formulae, 2016,22(18):64-67.
[8] 易满, 封传华, 汤小林, 等. 不同产地车前草中总苯乙醇苷和毛蕊花糖苷含量测定. 中国中医药信息杂志, 2017,24(9):84-86.
Yi M, Feng C H, Tang X L, et al. Content determination of phenylethanoid glycosides and acteoside in Plantago herba from different producing areas. Chinese Journal of Information on Traditional Chinese Medicine, 2017,24(9):84-86.
[9] 马志国, 甘稳城. RP-HPLC同时测定沙苁蓉中3种苯乙醇苷的含量. 药物分析杂志, 2011,31(6):1084-1087.
Ma Z G, Gan W C. RP-HPLC simultaneous determination of three phenylethanoid glycosides in Cistanche sinensis G.Beck. Chinese Journal of Pharmaceutical Analysis, 2011,31(6):1084-1087.
[10] 李彩峰, 温爱平, 王晓琴, 等. HPLC同时测定黄花列当中3个苯乙醇苷的含量. 药物分析杂志, 2016,36(2):291-295.
Li C F, Wen A P, Wang X Q, et al. HPLC simultaneous determination of three phenylethanoid glycosides in Orobanche pycnostachya. Chinese Journal of Pharmaceutical Analysis, 2016,36(2):291-295.
[11] 李秀敏, 王勇, 张俊清, 等. HPLC法同时测定裸花紫珠中3种苯乙醇苷类成分的含量. 广州化工, 2019,47(11):104-106.
Li X M, Wang Y, Zhang J Q, et al. Simultaneous determination of three kinds of phenylethanoid glycosides in Callicarpa nudiflora by HPLC method. Guangzhou Chemical Industry, 2019,47(11):104-106.
[12] 蔡灏, 孙秀漫, 欧阳彩君, 等. HPLC测定不同产地广东紫珠中3种苯乙醇苷的含量. 中国实验方剂学杂志, 2013,19(10):63-65.
Cai H, Sun X M, Ouyang C J, et al. Content determination of three kinds of benzene glycosides in different parts of Callicarpa kwangtungensis from different areas by HPLC. Chinese Journal of Experimental Traditional Medical Formulae, 2013,19(10):63-65.
[13] 陈朋, 谢锐星, 邱志敬. 40种苦苣苔科植物毛蕊花糖苷与总黄酮含量的测定. 贵州农业科学, 2016,44(8):94-96.
Chen P, Xie R X, Qiu Z J. Measurement of acteoside and total flavonoids contents in 40 kinds of Gesneriaceae plants. Guizhou Agricultural Sciences, 2016,44(8):94-96.
[14] Duynstee H I, de Koning M C, Ovaa H, et al. Synthesis of verbascoside: a dihydroxyphenylethyl glycoside with diverse bioactivity. European Journal of Organic Chemistry, 1999,1999(10):2623-2632.
doi: 10.1002/(ISSN)1099-0690
[15] de Davy A M, Kildegaard H F, Andersen M R. Cell factory engineering. Cell Systems, 2017,4(3):262-275.
doi: 10.1016/j.cels.2017.02.010
[16] Zhi J Y, Li Y J, Zhang Z Y, et al. Molecular regulation of catalpol and acteoside accumulation in radial striation and non-radial striation of Rehmannia glutinosa tuberous root. International Journal of Molecular Sciences, 2018,19(12):3751.
doi: 10.3390/ijms19123751
[17] Wang F Q, Zhi J Y, Zhang Z Y, et al. Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science, 2017,8:787.
doi: 10.3389/fpls.2017.00787
[18] Zhang, Li, Wang, et al. Analysis of Centranthera grandiflora Benth transcriptome explores genes of catalpol, acteoside and azafrin biosynthesis. International Journal of Molecular Sciences, 2019,20(23):6034.
doi: 10.3390/ijms20236034
[19] Su D, Li W, Xu Q M, et al. New metabolites of acteoside identified by ultra-performance liquid chromatography/quadrupole-time-of-flight MSE in rat plasma, urine, and feces. Fitoterapia, 2016,112:45-55.
doi: 10.1016/j.fitote.2016.05.004
[20] Cui Q L, Pan Y N, Xu X T, et al. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS. Fitoterapia, 2016,109:67-74.
doi: 10.1016/j.fitote.2015.12.011
[21] Zhou F, Zhao Y J, Li M Q, et al. Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on anti-hypoxia activity. Scientific Reports, 2017,7:10068.
doi: 10.1038/s41598-017-10411-0 pmid: 28855701
[22] Cui Q L, Pan Y N, Zhang W, et al. Metabolites of dietary acteoside: profiles, isolation, identification, and hepatoprotective capacities. Journal of Agricultural and Food Chemistry, 2018,66(11):2660-2668.
doi: 10.1021/acs.jafc.7b04650
[23] Berner M, Krug D, Bihlmaier C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Journal of Bacteriology, 2006,188(7):2666-2673.
doi: 10.1128/JB.188.7.2666-2673.2006
[24] Rao G D, Zhang J G, Liu X X, et al. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Food Chemistry, 2019,300:125246.
doi: 10.1016/j.foodchem.2019.125246
[25] Satoh Y, Tajima K, Munekata M, et al. Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metabolic Engineering, 2012,14(6):603-610.
doi: 10.1016/j.ymben.2012.08.002
[26] Vavricka C J, Yoshida T, Kuriya Y, et al. Mechanism-based tuning of insect 3, 4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nature Communications, 2019,10:2015.
doi: 10.1038/s41467-019-09610-2
[27] Chung D, Kim S Y, Ahn J H. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Scientific Reports, 2017,7:2578.
doi: 10.1038/s41598-017-02042-2
[28] Chen W, Yao J, Meng J, et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nature Communications, 2019,10:960.
doi: 10.1038/s41467-019-08781-2 pmid: 30814511
[29] Fatemi F, Abdollahi M R, Mirzaie-Asl A, et al. Identification and expression profiling of rosmarinic acid biosynthetic genes from Satureja khuzistanica under carbon nanotubes and methyl jasmonate elicitation. Plant Cell, Tissue and Organ Culture (PCTOC), 2019,136(3):561-573.
doi: 10.1007/s11240-018-01537-8
[30] Jiang J J, Yin H, Wang S, et al. Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose. Journal of Agricultural and Food Chemistry, 2018,66(17):4431-4438.
doi: 10.1021/acs.jafc.8b01272
[31] Torrens-Spence M P, Pluskal T, Li F S, et al. Complete pathway elucidation and heterologous reconstitution of rhodiola salidroside biosynthesis. Molecular Plant, 2018,11(1):205-217.
doi: S1674-2052(17)30377-5 pmid: 29277428
[32] Li Y L, Wang X L, Chen T T, et al. RNA-seq based de novo transcriptome assembly and gene discovery of Cistanche deserticola fleshy stem. PLoS One, 2015,10(5):e0125722. DOI: 10.1371/journal.pone.0125722.
doi: 10.1371/journal.pone.0125722
[33] Sun X, Li L, Pei J, et al. Metabolome and transcriptome profiling reveals quality variation and underlying regulation of three ecotypes for Cistanche deserticola. Plant Molecular Biology, 2020,102(3):253-269.
doi: 10.1007/s11103-019-00944-5
[34] Zhou Y Q, Wang X N, Wang W S, et al. De novo transcriptome sequencing-based discovery and expression analyses of verbascoside biosynthesis-associated genes in Rehmannia glutinosa tuberous roots. Molecular Breeding, 2016,36(10):1-11.
doi: 10.1007/s11032-015-0425-z
[35] 罗海羽. 诱导子在植物细胞培养中的研究进展. 北京农业, 2011,(36):15-16.
Luo H Y. Elicitor in plant cell culture research. Beijing Agriculture, 2011,(36):15-16.
[36] Chen H C, Li Q Z, Shuford C M, et al. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(52):21253-21258.
[37] Furuya T, Arai Y, Kino K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Applied and Environmental Microbiology, 2012,78(17):6087-6094.
doi: 10.1128/AEM.01103-12
[38] Lin Y H, Yan Y J. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 2012,11:42.
doi: 10.1186/1475-2859-11-42
[39] 秦小淯, 乔建军, 李艳妮. 羟基肉桂酰基转移酶的结构、功能与应用. 中国生物化学与分子生物学报, 2019,35(10):1058-1066.
Qin X Y, Qiao J J, Li Y N. Structure, function and application of hydroxycinnamoyl transferase. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(10):1058-1066.
[40] Cha M N, Kim H J, Kim B G, et al. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli. Journal of Microbiology and Biotechnology, 2014,24(8):1109-1117.
pmid: 24786529
[41] Li T Z, Zhou W, Bi H P, et al. Production of caffeoylmalic acid from glucose in engineered Escherichia coli. Biotechnology Letters, 2018,40(7):1057-1065.
doi: 10.1007/s10529-018-2580-x
[42] Chiang Y C, Levsh O, Lam C K, et al. Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT). PLoS Computational Biology, 2018,14(10):e1006511.
doi: 10.1371/journal.pcbi.1006511
[43] Bai Y F, Bi H P, Zhuang Y B, et al. Production of salidroside in metabolically engineered Escherichia coli. Scientific Reports, 2014,4:6640.
doi: 10.1038/srep06640
[44] Fan B, Chen T Y, Zhang S, et al. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Scientific Reports, 2017,7:463.
doi: 10.1038/s41598-017-00568-z pmid: 28352078
[45] Choo H J, Kim E J, Kim S Y, et al. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Applied Biological Chemistry, 2018,61(3):295-301.
doi: 10.1007/s13765-018-0360-x
[46] 谢峻, 刘燕, 柯江英, 等. 苯乙醇苷合成的研究进展. 中草药, 2019,50(20):5109-5116.
Xie J, Liu Y, Ke J Y, et al. Advances in biosynthesis and chemical synthesis of phenylethanoid glycosides. Chinese Traditional and Herbal Drugs, 2019,50(20):5109-5116.
[47] Hernández-Chávez G, Martinez A, Gosset G. Metabolic engineering strategies for caffeic acid production in Escherichia coli. Electronic Journal of Biotechnology, 2019,38:19-26.
doi: 10.1016/j.ejbt.2018.12.004
[48] Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Applied Microbiology and Biotechnology, 2014,98(3):1145-1154.
doi: 10.1007/s00253-013-4958-y
[49] Liu L Q, Liu H, Zhang W, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering, 2019,5(2):287-295.
doi: 10.1016/j.eng.2018.11.029
[50] Li Y Z, Mao J W, Liu Q L, et al. De novo biosynthesis of caffeic acid from glucose by engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2020,9(4):756-765.
doi: 10.1021/acssynbio.9b00431
[51] Li X L, Chen Z Y, Wu Y F, et al. Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol. ACS Synthetic Biology, 2018,7(2):647-654.
doi: 10.1021/acssynbio.7b00385
[52] Yao J, He Y, Su N N, et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nature Communications, 2020,11:1515.
doi: 10.1038/s41467-020-14918-5
[53] Li C Z, Jia P, Bai Y J, et al. Efficient synthesis of hydroxytyrosol from l-3, 4-dihydroxyphenylalanine using engineered Escherichia coli whole cells. Journal of Agricultural and Food Chemistry, 2019,67(24):6867-6873.
doi: 10.1021/acs.jafc.9b01856
[54] Xue Y X, Chen X Z, Yang C, et al. Engineering Eschericha coli for enhanced tyrosol production. Journal of Agricultural and Food Chemistry, 2017,65(23):4708-4714.
doi: 10.1021/acs.jafc.7b01369
[55] Liu X, Li X B, Jiang J L, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018,47:243-253.
doi: 10.1016/j.ymben.2018.03.016
[56] Guo W, Huang Q L, Feng Y H, et al. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2020,117(8):2410-2419.
doi: 10.1002/bit.v117.8
[57] Liu H Y, Tian Y J, Zhou Y, et al. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microbial Biotechnology.[2021-04-11]. https://doi.org/10.1111/1751-7915.13667.
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[5] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[6] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[7] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[8] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[9] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[10] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[11] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[12] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.
[13] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[14] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[15] 匙占库,文孟良,赵江源,李铭刚,韩秀林. 桉叶素生物合成研究进展[J]. 中国生物工程杂志, 2018, 38(11): 92-102.