Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 100-107    DOI: 10.13523/j.cb.20190714
综述     
链黑菌素研究进展 *
欧梦莹1,王晓政2,林双君2,关统伟1,**(),林宜锦1
1 西华大学微生物研究所 西华大学食品与生物工程学院 成都 610039
2 上海交通大学生命科学技术学院 微生物代谢国家重点实验室 上海 200240
A Review of Studies on Streptonigrin
Meng-ying OU1,Xiao-zheng WANG2,Shuang-jun LIN2,Tong-wei GUAN1,**(),Yi-jin LIN1
1 Xihua University Institute of Microbiology, School of Food Science and Biotechnology, Xihua University,Chengdu 610039,China
2 State Key Laboratory of Microbial Metabolism, School of Life Science and Technology, Shanghai Jiaotong University, Shanghai 200240,China
 全文: PDF(988 KB)   HTML
摘要:

链黑菌素(streptonigrin,STN)是一种由绒毛链霉菌(Streptomyces flocculus)产生的具有独特的氨基喹啉醌式结构的高效抗肿瘤抗生素,在癌症治疗方面具有良好的防治效果和广阔的应用前景。但是,由于链黑菌素具有较为显著的骨髓抑制副作用,限制了其在临床上的广泛应用。 综述了有关链黑菌素的抗肿瘤机制、结构特点及链黑菌素及其类似物生物化学合成相关的现有知识和减除毒副作用的研究现状与展望,从而为开发低毒、无毒副作用的链黑菌素及其类似物提供科学参考。

关键词: 链黑菌素遗传毒性结构特性生物合成    
Abstract:

Streptonigrin (STN) is an anti-tumor antibiotic with a unique aminoquinolinium structure produced by Streptomyces flocculus, which has good control effect and broad application prospects in cancer treatment. However, the clinical application of STN has been limited because of its relatively significant myelosuppression side effect.The anti-tumor mechanism, structural features and existing knowledge related to the biosynthesis of streptonigrin and its analogs, including research status and prospects of reducing toxic side effects have been summarized, and providing a scientific reference for the development of low or non-toxic streptonigrin and its analogues.

Key words: Streptomycin    Genetic toxicity    Structural characteristics    Biosynthesis
收稿日期: 2018-12-15 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 四川省科技厅资助项目(2018JZ0037)
通讯作者: 关统伟     E-mail: guantongweily@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
欧梦莹
王晓政
林双君
关统伟
林宜锦

引用本文:

欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.

Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin. China Biotechnology, 2019, 39(7): 100-107.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190714        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/100

图1  链黑菌素家族的3个代表化合物
图2  基于同位素喂养推测的两种可能的生物合成途径
图3  链黑菌素生物合成基因簇图谱(包含55个ORF的65.5kb的序列)
图4  链黑菌素生物合成基因簇和途径
[1] Qian T L, Wo J, Zhang Y , et al. Crystal structure of StnA for the biosynthesis of antitumor drug streptonigrin reveals a unique substrate binding mode. Scientific Reports, 2017,7:40254.
doi: 10.1038/srep40254
[2] Heikal A, Hards K, Cheung C Y , et al. Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. Journal of Antimicrobial Chemotherapy, 2016,71(10):2840-2847.
doi: 10.1093/jac/dkw244
[3] Kadela-Tomanek M, Pawelczak B, Jastrzgbska M , et al. Structural,vibrational and quantum chemical investigations for 6,7dichloro-2-methyl-5,8-quinolinedione. Cytotoxic and molecular docking studies. Journal of Molecular Structure, 2018,1168:73-83.
doi: 10.1016/j.molstruc.2018.05.031
[4] Testoni M I, Bolzán A D, Bianchi M S , et al. Effects of antioxidants on streptonigrin-induced DNA damage and clastogenesis in CHO cells. Mutation Research, 1997,373(2):201-206.
doi: 10.1016/S0027-5107(96)00198-4
[5] Testoni M I, Bianchi N O, Bianchi M S . The kinetics of chromosome and DNA damage by streptonigrin in CHO cells. Mutation Research, 1995,334(1):23-31.
doi: 10.1016/0165-1161(95)90027-6
[6] Andersson R C . Induction of sister-chromatid exchanges by streptonigrin, an antibiotic and antineoplastic agent. Hereditas, 1981,95(1):141-148.
[7] DuFrain R J, Littlefield L G, Morrison W D , et al. Evaluation of chemically induced cytogenetic lesions in rabbit oocytes.III.A post-implantation analysis of streptonigrin effects. Mutation Research, 1984,127(1):73-79.
doi: 10.1016/0027-5107(84)90142-8
[8] Cadieux B, Colavecchio A, Jeukens J , et al. Prophage induction reduces shiga toxin producing Escherichia coli (STEC) and salmonella entericaon tomatoes and spinach: a model study. Food Control, 2018,89:250-259.
doi: 10.1016/j.foodcont.2018.02.001
[9] Cone R, Hasan S, Lown J . The mechanism of the degradation of DNA by streptonigrin. Canadian Journal of Biochemistry, 1976,54(3):219-223.
doi: 10.1139/o76-034
[10] Rao K V, Cullen W P . Streptonigrin,an antitumor substance.I.Isolation and characterization. Antibiotics Annual, 1959,2010(3):950-953.
[11] Brazhnikova M G, Ponomarenko V I, Kovsharova I N , et al. Study on bruneomycin produced by act.albus var.Bruneomycini and its identification with streptonigrin. Antibiot Khimioter, 1968,13(2):99-102.
[12] Malkina N D, DudnikIu V, Lysenkova L N , et al. Induction of antibiotic formation by inactive cultures of actinomycetes.A mutant strain of Streptomyces helvaticus,a new producer of bruneomycin. Antibiot Khimioter, 1995,40(6):3-6.
[13] Wang H S, Yeo S L, Xu J , et al. Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis. Journal of Natural Products, 2002,65(5):721-724.
doi: 10.1021/np0104572
[14] Jin Y Y, Yoon T M, Kim W K , et al. Kitasatospora sp.MJM383 strain producing two antitumor agents,streptonigrin and oxopropaline G. Journal of Microbiology and Biotechnology, 2005,15(5):1140-1145.
[15] Sugiura Y, Kuwahara J, Suzuki T . DNA interaction and nucleotide sequence cleavage of copper-streptonigrin. Biochimicaet Biophysica Acta, 1984,782(3):254-261.
doi: 10.1016/0167-4781(84)90060-5
[16] Anderberg P I, Harding M M . The effect of metal ions on the electrochemistry of the antitumor antibiotic streptonigrin. Journal of Inorganic Biochemistry, 2004,98(5):720-726.
doi: 10.1016/j.jinorgbio.2003.10.011
[17] Yamashita Y, Kawada S, Fujii N , et al. Induction of mammalian DNA topoisomerase II dependent DNA cleavage by antitumor antibiotic streptonigrin. Cancer Research, 1990,50(18):5841-5844.
[18] Gavriil M, Tsao C C, Mandiyan S , et al. Specific IKK beta inhibitor IV blocks streptonigrin-induced NF-kappa B activity and potentiates its cytotoxic effect on cancer cells. Molecular Carcinogenesis, 2009,48(8):678-684.
doi: 10.1002/mc.v48:8
[19] Beall H D, Murphy A M, Siegel D , et al. Nicotinamide adenine dinucleotide (phosphate):quinoneoxidoreductase(DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Molecular Pharmacology, 1995,48(3):499-504.
[20] Cohen M M, Shaw M W, Craig A P . The effects of streptonigrin on cultured human leukocytes. Proceedings of the National Academy of Sciences, 1963,50(50):16-24.
doi: 10.1073/pnas.50.1.16
[21] Sanchez J, Bianchi M S, Ciancio V R , et al. Analysis of spontaneous and streptonigrin-induced sister chromatid exchanges in peripheral iymphocytes of aircrew members of international flights. Journal of Environmental Pathology Toxicology and Oncology, 2008,27(4):277-285.
doi: 10.1615/JEnvironPatholToxicolOncol.v27.i4
[22] Mencucci M V, Bravo M V, Bianchi M S , et al. Streptonigrin induces delayed chromosomal instability involving interstitial telomeric sequences in chinese hamster ovary cells.Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2012,747(1):46-52.
[23] Dreyton C J, Anderson E D, Subramanian V , et al. Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorganic & Medicinal Chemistry, 2014,22(4):1362-1369.
[24] Park S, Chun S . Streptonigrin inhibits beta-Catenin/Tcf signaling and shows cytotoxicity in beta-catenin-activated cells. Biochimicaet Biophysica Acta, 2011,1810(12):1340-1345.
doi: 10.1016/j.bbagen.2011.06.023
[25] Khandoga N, Pohl U . Gap junction communications promote streptonigrin-induced apoptosis in HeLa cells. Journal of Vascular Research, 2006,43(1):50.
[26] Ambaye N, Chen C H, Khanna S , et al. Streptonigrininhibits SENP1 and reduces the protein level of hypoxia-inducible factor 1 alpha (HIF1 alpha) in cells. Biochemistry, 2018,57(11):1807-1813.
doi: 10.1021/acs.biochem.7b00947
[27] Lewis A M, Ough M, Du J , et al. Targeting NAD(P)H: quinoneoxidoreductase (nqo1) pancreatic cancer. Molecular Carcinogenesis, 2017,56(7):215-224.
[28] Gavriil M, Tsao C C, Mandiyan S , et al. Specific IKK beta inhibitor IV blocks streptonigrin-induced NF-kappa B activity and potentiates its cytotoxic effect on cancer cells. Molecular Carcinogenesis, 2009,48(8):678-684.
doi: 10.1002/mc.v48:8
[29] Gutteridge J M . Streptonigrin-induced deoxyribosedegradation:inhibition by superoxide dismutase,hydroxylradical scavengers and ironchelators. Biochemical Pharmacology, 1984,33(19):3059-3062.
doi: 10.1016/0006-2952(84)90609-9
[30] Krishna M C, Halevy R F, Zhang R , et al. Modulation of streptonigrincytotoxicitybynitroxide SOD mimics. Free Radical Biology &Medicine, 1994,17(5):379-388.
[31] DeGraff W, Hahn S M, Mitchell J B , et al. Free radical modes of cytotoxicity of adriamycinandstreptonigrin. Biochemical Pharmacology, 1994,48(7):1427-1435.
doi: 10.1016/0006-2952(94)90567-3
[32] Kadela-Tomanek M, Jastrzebska M, Bebenek E , et al. Newacetylenic amine derivatives of 5,8-quinolinediones: synthesis,crystal structure and antiproliferative activity. Crystals, 2017,7(1):15.
doi: http://www.mdpi.com/2073-4352/7/1/15
[33] Rao K V, Biemann K, Woodward R B . The structure of streptonigrin.Journal of The American Chemical Society. 1963,85(16):2532-2533.
doi: http://pubs.acs.org/doi/abs/10.1021/ja00899a051
[34] Bringmann G, Reichert M, Hemberger Y . The absolute configuration of streptonigrin. Tetrahedron, 2008,64(3):515-521.
doi: 10.1016/j.tet.2007.11.015
[35] Gould S J, Chang C C . Streptonigrinbiosynthesis.1.origin of the 4-phenylpicolinic acid moiety. Journal of The American Chemical Society, 1977,99(16):5496-5497.
doi: 10.1021/ja00458a052
[36] Gould S J, Darling D S . Streptonigrin biosynthesis.2.the isolation of β-methyltryptophanand its intermediacy in the streptonigrin pathway. Tetrahedron Letters, 1978,19(35):3207-3210.
doi: 10.1016/S0040-4039(01)85595-7
[37] Gould S J, Chang C C . Streptonigrin biosynthesis.3. determination of the primary precursors to the 4-phenylpicolinic acid portion. Journal of The American Chemical Society, 1980,102(5):1702-1706.
doi: 10.1021/ja00525a039
[38] Gould S J, Chang C C, Darling D S . Streptonigrinbiosynthesis.4.details of the tryptophan metabolism. Journal of The American Chemical Society, 1980,102(5):1707-1712.
doi: 10.1021/ja00525a040
[39] Xu F, Kong D K, He X Y , et al. Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N-C Bond. Journal of The American Chemical Society, 2013,135(5):1739-1748.
doi: 10.1021/ja3069243
[40] Wu S F, Huang T T, Xie D , et al. Xantholipin B produced by the StnR inactivation mutant Streptomyces flocculus CGMCC 4.1223 WJN-1. Journal of Antibiotics, 2017,70(1):90-95.
doi: 10.1038/ja.2016.60
[41] Wo J, Kong D K, Brock N L , et al. Transformation of streptonigrin to streptonigrone:flavin reductase-mediated flavin-catalyzed concomitant oxidative decarboxylation of picolinic acid derivatives. American Chemical Society Catalysis, 2016,6(5):2831-2835.
[42] Kong D K, Zou Y, Zhang Z , et al. Identification of (2S,3S)-beta-methyltryptophan as the real biosynthetic intermediate of antitumor agent streptonigrin. Scientific Reports, 2016,6:20273.
[43] Kadela M, Jastrzebska M, Bebenek E , et al. Synthesis,structure and cytotoxic activity of mono- and dialkoxy derivatives of 5,8-quinolinedione. Molecules, 2016,21(2):156.
doi: 10.3390/molecules21020156
[44] Sandelier M J , DeShong P.Reductive cyclization of o-nitrophenylpropargyl alcohols: facile synthesis of substituted quinolines. Organic Letters, 2007,9(17):3209-3212.
doi: 10.1021/ol0710921
[45] Zhang X, Xu X F, Yu L T , et al. Three-component reactions of aldehydes, amines,and alkynes/alkenes catalyzed by trifluoromethanesulfonic acid:an efficient route to substituted quinolines. Asian Journal of Organic Chemistry, 2014,3(3):281-284.
doi: 10.1002/ajoc.v3.3
[46] Borel C R, Barbosa L C A, Maltha C R A , et al. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction. Tetrahedron Letters, 2015,56(5):662-665.
doi: 10.1016/j.tetlet.2014.12.016
[47] McElroy W T, DeShong P . Synthesis of the CD-ring of the anticancer agent streptonigrin:studies of aryl-aryl coupling methodologies. Tetrahedron, 2006,62(29):6945-6954.
doi: 10.1016/j.tet.2006.04.074
[48] Chan B K, Ciufolini M A . Total synthesis of streptonigrone. Journal of Organic Chemistry, 2007,72(22):8489-8495.
doi: 10.1021/jo701435p
[49] Cai W, Hassani M, Karki R , et al. Synthesis,metabolism and in vitro cytotoxicity studies on novel iavendamycin antitumor agents. Bioorganic & Medicinal Chemistry, 2010,18(5):1899-1909.
[50] Mandewale M C, Thorat B, Patil U , et al. Developments in quinoline synthesis:a review. Heterocyclic Letters, 2015,5(3):475-488.
[51] Burke P J, Toki B E, Meyer D W , et al. Novelimmunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorganic & Medicinal Chemistry Letters, 2009,19(10):2650-2653.
[52] Xia X, Lin S J, Xia X X , et al. Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Applied Microbiology and Biotechnology, 2014,98(10):4399-4407.
doi: 10.1007/s00253-014-5555-4
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[11] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[12] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[13] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[14] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[15] 匙占库,文孟良,赵江源,李铭刚,韩秀林. 桉叶素生物合成研究进展[J]. 中国生物工程杂志, 2018, 38(11): 92-102.