Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (12): 64-72    DOI: 10.13523/j.cb.20191209
综述     
纳米材料诱导自噬引发保护作用的研究进展
詹蕙璐1,2,3,白莹1,2,庄严1,2,孟娟1,2,赵海洋1,2,3,*()
1 温州大学生命科学研究院 浙江 温州 325035
2 温州市生物医药协同创新中心 温州 325035
3 温州医科大学药学院 温州 325035
Research Progress of Autophagy Induced Protection by Nanomaterials
ZHAN Hui-lu1,2,3,BAI Ying1,2,ZHUANG Yan1,2,MENG Juan1,2,ZHAO Hai-yang1,2,3,*()
1 Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
2 Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, Zhejiang 325035, China
3 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
 全文: PDF(864 KB)   HTML
摘要:

溶酶体-自噬系统在细胞对纳米材料的适应性反应中起到关键作用。自噬在保护细胞免受损伤和保持细胞稳定方面发挥重大作用,但纳米材料引起自噬的本质尚不清楚。纳米材料被细胞认为是外来入侵者,其积累将激活机体的清除机制,引发自噬。介绍了纳米材料诱导自噬发生的自我保护机制,综合分析了纳米材料对溶酶体-自噬系统的影响及其生物学效应。

关键词: 自噬溶酶体纳米材料肝损伤    
Abstract:

Lysosomal-autophagy system plays a critical part in the adaptive response of cells to nanomaterials. Autophagy has great utility in protecting cells from damage and keeping them stable. However, the essence of autophagy induced by nanomaterials is still unclear. Nanomaterials are recognized as alien invaders, the accumulation of which will activate the body's clearance mechanism. And this will lead to autophagy after the absorption of nanomaterials. This review introduces the self-protection mechanism of autophagy induced by nanomaterials, and analyzes the influence of nanomaterials on lysosomal-autophagy system and their biological effects comprehensively.

Key words: Autophagy    Lysosomal    Nanomaterials    Liver injury
收稿日期: 2019-04-28 出版日期: 2020-01-15
ZTFLH:  Q819  
通讯作者: 赵海洋     E-mail: haiyangwzu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
詹蕙璐
白莹
庄严
孟娟
赵海洋

引用本文:

詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.

ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials. China Biotechnology, 2019, 39(12): 64-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191209        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I12/64

图1  自噬形成过程及其分子机制
图2  自噬形成相关信号通路
[1] Lee J, Giordano S, Zhang J.Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 2012, 441(2): 523-540.
[2] Mizushima N, Komatsu M.Autophagy: renovation of cells and tissues. Cell, 2011, 147(4): 728-741.
[3] Switon K, Kotulska K, Janusz-Kaminska A, et al.Molecular neurobiology of mTOR. Neuroscience, 2017, 341: 112-153.
[4] Srivastava V, Gusain D, Sharma Y C.Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 2015, 54(24): 6209-6233.
[5] He C, Klionsky D J.Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 2009, 43: 67-93.
[6] Dikic I, Elazar Z.Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364.
[7] Takamura A, Komatsu M, Hara T, et al.Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 2011, 25(8): 795-800.
[8] Eskelinen E L.The dual role of autophagy in cancer. Curr Opin Pharmacol, 2011, 11(4): 294-300.
[9] Kimmelman A C, White E.Autophagy and tumor metabolism. Cell Metab, 2017, 25(5): 1037-1043.
[10] Green D R, Levine B.To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 2014, 157(1): 65-75.
[11] Füllgrabe J, Klionsky D J, Joseph B.The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol, 2014, 15(1): 65-74.
[12] Codogno P, Mehrpour M, Proikas-Cezanne T.Canonical and non-canonical autophagy: variations on a common theme of self-eating. Nat Rev Mol Cell Biol, 2011, 13(1): 7-12.
[13] Mari?o G, Niso-Santano M, Baehrecke E H, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014, 15(2): 81-94.
[14] Mizushima N, Yoshimori T, Ohsumi Y.The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 2011, 27: 107-132.
[15] Komatsu M, Kageyama S, Ichimura Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol Res, 2012, 66(6): 457-462.
[16] Vousden K H, Lane D P. p53 in health and disease. Nat Rev Mol Cell Biol, 2007, 8(4): 275-283.
[17] Denisenko T V, Pivnyuk A D, Zhivotovsky B. p53-Autophagy-Metastasis Link. Cancers (Basel), 2018, 10(5): 148.
[18] Kenzelmann Broz D, Spano Mello S, Bieging K T, et al.Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev, 2013, 27(9): 1016-1031.
[19] Tasdemir E, Maiuri M C, Orhon I, et al.p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle, 2008, 7(19): 3006-3011.
[20] Tsujimoto Y, Shimizu S.Another way to die: autophagic programmed cell death. Cell Death Differ, 2005, 12: 1528-1534.
[21] Moore M N.Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress. Autophagy, 2008, 4(2): 254-256.
[22] Ilyas G, Zhao E, Liu K, et al.Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol, 2016, 64(1): 118-127.
[23] Seleverstov O, Zabirnyk O, Zscharnack M, et al.Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett, 2006, 6(12): 2826-2832.
[24] Stern S T, Zolnik B S,McLeland C B, et al.Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials. Toxicol Sci, 2008, 106(1): 140-152.
[25] Yu L, Lu Y, Man N, et al.Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small, 2009, 5(24): 2784-2787.
[26] Seleverstov O, Phang J M, Zabirnyk O.Semiconductor nanocrystals in autophagy research: methodology improvement at nanosized scale. Methods Enzymol, 2009, 452: 277-296.
[27] Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, et al.Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J, 2012, 441(3): 813-821.
[28] Li J J, Hartono D, Ong C N, et al.Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 2010, 31(23): 5996-6003.
[29] Chen Y, Yang L, Feng C, et al.Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem Biophys Res Commun, 2005, 337(1): 52-60.
[30] Man N, Yu L, Yu S H, et al.Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 2010, 6(2): 310-311.
[31] Zhang Y, Yu C, Huang G, et al.Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomedicine, 2010, 5: 601-609.
[32] Zhang Q, Yang W, Man N, et al.Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 2009, 5(8): 1107-1117.
[33] Wu Y N, Yang L X, Shi X Y, et al.The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011, 32(20): 4565-4573.
[34] Li H, Li Y, Jiao J, et al.Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol, 2011, 6(10): 645-650.
[35] Li C, Liu H, Sun Y, et al.PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol, 2009, 1(1): 37-45.
[36] Man N, Chen Y, Zheng F, et al.Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy, 2010, 6(4): 449-454.
[37] Donaldson K, Poland C A.Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol, 2013, 24(4): 724-734.
[38] Pelaz B, Charron G, Pfeiffer C, et al.Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small, 2013, 9(9-10): 1573-1584.
[39] Armstead A L, Li B.Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine, 2016, 11: 6421-6433.
[40] Lim E K, Kim T, Paik S, et al.Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2015, 115(1): 327-394.
[41] Etheridge M L, Campbell S A, Erdman A G, et al.The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine, 2013, 9(1): 1-14.
[42] Wang B, He X, Zhang Z, et al.Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res, 2013, 46(3): 761-769.
[43] Park J K, Utsumi T, Seo Y E, et al.Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine, 2016, 12(5): 1365-1374.
[44] Zhu S, Zhang J, Zhang L, et al.Inhibition of kupffer cell autophagy abrogates nanoparticle-induced liver injury. Adv Healthc Mater, 2017, 6(9): 1601252.
[45] Lee T Y, Liu M S, Huang L J, et al.Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol, 2013, 10: 40.
[46] Galluzzi L, Pietrocola F, Levine B, et al.Metabolic control of autophagy. Cell, 2014, 159(6): 1263-1276.
[47] Kermanizadeh A, Jantzen K, Ward M B, et al.Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis. Nanotoxicology, 2017, 11(2): 184-200.
[48] Wang Q, Zhou Y, Fu R, et al.Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live C. elegans. Nanoscale, 2018, 10(48): 23059-23069.
[49] Schroder K, Tschopp J.The inflammasomes. Cell, 2010, 140(6): 821-832.
[50] Rikiishi H.Novel insights into the interplay between apoptosis and autophagy. Int J Cell Biol, 2012, 2012: 317645.
[51] Kubes P, Mehal W Z.Sterile inflammation in the liver. Gastroenterology, 2012, 143(5): 1158-1172.
[52] Han J, Bae J, Choi C Y, et al.Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy, 2016, 12(12): 2326-2343.
[53] Wei P, Yang F, Zheng Q, et al.The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci, 2019, 13: 73.
[54] Saitoh T, Fujita N, Jang M H, et al.Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008, 456(7219): 264-268.
[55] Nakahira K, Haspel J A, Rathinam V A, et al.Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol, 2011, 12(3): 222-230.
[56] Xia T, Kovochich M, Brant J, et al.Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett, 2006, 6(8): 1794-1807.
[57] Zhou R, Yazdi A S, Menu P, et al.A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329): 221-225.
[58] Juarez-Moreno K, Gonzalez E B, Girón-Vazquez N, et al.Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol, 2017, 36(9): 931-948.
[59] Costa C S, Ronconi J V, Daufenbach J F, et al.In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem, 2010, 342(1-2): 51-56.
[60] Cha K, Hong H W, Choi Y G, et al.Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett, 2008, 30(11): 1893-1899.
[61] Mirzoeva O K, Hann B, Hom Y K, et al.Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. J Mol Med (Berl), 2011, 89(9): 877-889.
[62] LoPiccolo J, Blumenthal G M, Bernstein W B, et al. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat, 2008, 11(1-2): 32-50.
[63] Mamane Y, Petroulakis E, LeBacquer O, et al.mTOR, translation initiation and cancer. Oncogene, 2006, 25(48): 6416-6422.
[64] Kuraishy A, Karin M, Grivennikov S I.Tumor promotion via injury- and death-induced inflammation. Immunity, 2011, 35(4): 467-477.
[65] Hussain S M, Frazier J M.Cellular toxicity of hydrazine in primary rat hepatocytes. Toxicol Sci, 2002, 69(2): 424-432.
[66] Chen Q, Xue Y, Sun J.Hepatotoxicity and liver injury induced by hydroxyapatite nanoparticles. J Appl Toxicol, 2014, 34(11): 1256-1264.
[67] Wang Y, Xu X, Gu Y, et al.Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv, 2018, 15(7): 687-701.
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[6] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[10] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[11] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[12] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[13] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[14] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[15] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.