Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (12): 50-55    DOI: 10.13523/j.cb.20191207
综述     
新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用
卢钟腾,呼高伟()
台州学院生命科学学院 台州 318000
Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy
LU Zhong-teng,HU Gao-wei()
School of Life Sciences, Taizhou Univesticy, Taizhou 318000, China
 全文: PDF(468 KB)   HTML
摘要:

如何将生物活性分子高效投递到靶标的细胞和组织仍然是生物治疗领域研究人员面临的难题之一。直到细胞穿膜肽(cell penetrating peptides, CPPs)的出现,其可介导多种外源性功能分子(核酸、多肽、蛋白质和化学药物)进入细胞,而且不影响外源活性分子的功能发挥。另外,CPPs在传递外源活性成分进入肿瘤组织和细胞方面表现出更具应用前景的优势。因此,通过对CPPs的分类、鉴定方法、穿膜机制、其在抗肿瘤治疗中的最新应用以及尚需要解决的问题进行综述,以期为新型CPPs的鉴定和其抗肿瘤治疗策略提供参考。

关键词: 细胞穿膜肽鉴定穿膜机制抗肿瘤治疗的应用    
Abstract:

How to deliver bioactive molecules efficiently to target cells and tissues is still one of the challenges for researchers in the field of bioremediation. Until the advent of CPPs, its can mediate a variety of exogenous functional molecules (nucleic acids, polypeptides, proteins, and chemical drugs) into the cell without affecting the function of exogenous active molecules. In addition, CPPs show a more promising advantage in transferring exogenous active ingredients into tumor tissues and cells. Therefore, the classification, identification method, penetrating mechanism of CPPs, and its application in anti-tumor therapy which hope to provide the reference of method and novel strategy for the identification of new CPPs and anti-tumor in clinical were summarized.

Key words: Identification of CPPs    Penetrating mechanism    Application in anti-tumor therapy
收稿日期: 2019-04-24 出版日期: 2020-01-15
ZTFLH:  Q813  
通讯作者: 呼高伟     E-mail: hugaowei68@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢钟腾
呼高伟

引用本文:

卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.

LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy. China Biotechnology, 2019, 39(12): 50-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191207        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I12/50

[1] Gupta S K, Gandham R K, Sahoo A P , et al. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci, 2015,72(6):1073-1094.
[2] 杨姣, 孙甫 . 基因治疗核酸递送载体的研究进展. 山西医科大学学报, 2018,49(3):310-315.
Yang J, Sun P . Research progress in gene delivery vector for gene therapy. J Shanxi Med Univ, 2018,49(3):310-315.
[3] Vivès E, Brodin P, Lebleu B . A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997,272(25):16010-16017.
[4] Gallo M, Defaus S, Andreu D . 198 2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys, 2019,661(1):74-86.
[5] Zou L, Peng Q, Wang P , et al. Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide. J Membr Biol, 2017,250(2):115-122.
[6] Kichler A, Mason A J, Marquette A , et al. Histidine-rich cationic cell-penetrating peptides for plasmid DNA and siRNA delivery. Methods Mol Biol, 2019,1943(3):39-59.
[7] Tunnemann G, Ter-Avetisyan G, Martin R M , et al. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci, 2008,14(4):469-476.
[8] Zahid M and Robbins P D . Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules, 2015,20(7):13055-13070.
[9] Li Q, Xu M, Cui Y , et al. Arginine-rich membrane-permeable peptides are seriously toxic. Pharmacol Res Perspect, 2017,5(5):e00334.
[10] 屈昂, 王哲, 于家峰 , 等. 不同类型细胞穿膜肽二级结构特征研究. 原子与分子物理学报, 2018,35(5):751-757.
Qu A, Wang Z, Yu J F , et al. Comprehensive analysis of secondary structures of different types of cell-penetrating peptides. Journal of Atomic and Molecular Physics, 2018,35(5):751-757.
[11] 邵安娜, 丁敏, 王文喜 . 细胞穿膜肽在给药系统中的应用. 药物生物技术, 2015,22(6):525-529.
Shao A N, Ding M, Wang W X . Cell-penetrating peptides and the application of drug delivery system. Pharmaceutical Biotechnology, 2015,22(6):525-529.
[12] Ragin A D, Morgan R A, Chmielewski J . Cellular import mediated by nuclear localization signal peptide sequences. Chem Biol, 2002,9(8):943-948.
[13] Yu W, Zhan Y, Xue B , et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J Biol Chem, 2018,293(39):15221-15232.
[14] Futaki S . Membrane-permeable arginine-rich peptides and the translocation mechanisms. Advanced Drug Delivery Reviews, 2005,57(4):547-558.
[15] Derakhshankhah H, Jafari S . Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed Pharmacother, 2018,108(6):1090-1096.
[16] Deshayes S, Plénat T, Aldrian-Herrada G , et al. Primary amphipathic cell-penetrating peptides: Structural requirements and interactions with model membranes. Biochemistry, 2004,43(24):7698-7706.
[17] Kalafatovic D, Giralt E . Cell-Penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules, 2017,22(11):1929-1967.
[18] Radicioni G, Stringaro A, Molinari A , et al. Characterization of the cell penetrating properties of a human salivary proline-rich peptide. Biochim Biophys Acta, 2015,1848(11 PtA):2868-2877.
[19] Gautam A, Chaudhary K, Kumar R , et al. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med, 2013,11(3):74-85.
[20] Hu G W, Zheng W L, Li A , et al. A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Vet Res, 2018,49(1):16-24.
[21] Ponnappan N, Chugh A . Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm, 2017,114(5):145-153.
[22] Zakeri M P, Mussa F S, Shirani A , et al. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI J, 2017,16(5):650-662.
[23] Liu D, Guo H, Zheng W Y , et al. Discovery of the cell-penetrating function of A2 domain derived from LTA subunit of Escherichia coli heat-labile enterotoxin. Appl Microbiol Biotechnol, 2016,100(11):5079-5088.
[24] Gestin M, Dowaidar M, Langel ü . Uptake mechanism of cell-penetrating peptides. Adv Exp Med Biol. 2017,1030(10):255-264.
[25] Veach R A, Liu D, Yao S , et al. Receptor/transporter-independent targeting of functional peptides across the plasma membrane. J Biol Chem, 2004,279(12):11425-11431.
[26] Costa Verdera H ,Gitz-Francois J J,Schiffelers R M, et al.Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release, 2017,266(22):100-108.
[27] Kawamoto S, Takasu M, Miyakawa T , et al. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group. J Chem Phys, 2011,134(9):095-103.
[28] Klimpel A, Lützenburg T, Neundorf I . Recent advances of anti-cancer therapies including the use of cell-penetrating peptides. Curr Opin Pharmacol, 2019,47(4):8-13.
[29] Castro J, Ribo M, Benito A , et al. A versatile protein with selective antitumor activity. Curr Med Chem, 2018,25(30):3540-3559.
[30] Guelen L, Paterson H, G?ken J , et al. TAT-apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene, 2004,23(5):1153-1165.
[31] Yang E C, Li X, Jin N Y . The chimeric multi-domain proteins mediating speciic DNA transfer for hepatocellular carcinoma treatment. Cancer Cell Int, 2016,16(10):80-92.
[32] Song W W, Zhao H Y, Cui Z Q , et al. Creation of an apoptin-derived peptide that interacts with SH3 domains and inhibits glioma cell migration and invasion. Tumour Biol, 2016. 37(11):15229-15240.
[33] Zhang L Q, Zhao H Y, Cui Z Q , et al. A peptide derived from apoptin inhibits glioma growth. Oncotarget, 2017,8(19):31119-31132.
[34] Zhou D Y, Liu W J, Liang S H , et al. Apoptin- derived peptide reverses cisplatin resistance in gastric cancer through the PI3Khe PI3Khe PI3K domains. Cancer Medicine, 2018,7(4):1369-1383.
[35] Shteinfer-Kuzmine A, Amsalem Z, Arif T , et al. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol, 2018,12(7):1077-1103.
[36] Liu Y, Song Z Y, Zheng N , et al. Systemic siRNA delivery to tumors by cell penetrating α-helical polypeptide-based metastable nanoparticles. Nanoscale, 2018, 16; 10(32):15339-15349.
[37] Fang B, Jiang L, Zhang M , et al. A novel cell-penetrating peptide TAT-A1 delivers siRNA into tumor cells selectively. Biochimie, 2013,95(2):251-257.
[38] Ruoslahti E, Bhatia S N, Sailor M J . Targeting of drugs and nanoparticles to tumors. J Cell Biol, 2010,188(6):759-768.
[39] Bi Y, Lee R J, Wang X , et al. Liposomal codelivery of an SN38 pro-drug and a survivin siRNA for tumor therapy. Int J Nanomedicine, 2018,13(10):5811-5822.
[40] Xiang Y, Shan W, Huang Y . Improved anticancer efficacy of doxorubicin mediated by human-derived cell-penetrating peptide dNP2. Int J Pharm, 2018,551(1-2):14-22.
[41] Lim K J, Sung B H, Shin J R , et al. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One, 2013,8(6):e66084.
[42] Grau M, Walker P R, Derouazi M . Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell Mol Life Sci, 2018,75(16):2887-2896.
[43] Derouazi M , Di Berardino-Besson W, Belnoue E, et al. Novel cell-penetrating peptide-based vaccine induces robust CD4 + and CD8 + T cell-mediated antitumor immunity . Cancer Res, 2015,75(15):3020-3031.
[44] Belnoue E ,Di Berardino-Besson W,Gaertner H, et al.Enhancing antitumor immune responses by optimized combinations of cellpenetrating peptide-based vaccines and adjuvants. Mol Ther, 2016,24(9):1675-1685.
[45] Gross D A, Leborgne C, Chappert P , et al. Induction of tumor-specific CTL responses using the C-terminal fragment of viral protein R as cell penetrating peptide. Sci Rep, 2019,9(1):3937-3947.
[46] Feni L, Neundorf I . The current role of cell-penetrating peptides in cancer therapy. Adv Exp Med Biol, 2017,1030(10):279-295.
[47] Ramsey J D, Flynn N H . Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther, 2015,154(5):78-86.
[48] Yang Y, Yang Y, Xie X , et al. Dual-modified liposomes with a two-photon-sensitive cell penetrating peptide and NGR ligand for siRNA targeting delivery. Biomaterials, 2015,48(4):84-96.
[1] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[2] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[3] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[4] 陈翠霞,王小龙,蒋太交,曹宗富,李天君,于磊,喻浴飞,蔡瑞琨,高华方,马旭. 基于多源异构大数据挖掘的流感病毒防控预测预警平台构建研究 *[J]. 中国生物工程杂志, 2020, 40(1-2): 109-115.
[5] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[6] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[7] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[8] 宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.
[9] 范月蕾,陆娇,陈大明,毛开云. 干细胞专利价值评估与转移转化对策研究 *[J]. 中国生物工程杂志, 2019, 39(1): 99-106.
[10] 钟鹏强,刘北忠,姚娟娟,刘冬冬,袁桢,刘俊梅,陈敏,钟梁. 敲低ACTL6A通过Notch1信号通路促进早幼粒细胞分化 *[J]. 中国生物工程杂志, 2018, 38(12): 1-6.
[11] 张莉,丁涓,郝宇晨,叶城,蒲洋. 一株海洋微藻的鉴定及其原生质体制备条件优化 *[J]. 中国生物工程杂志, 2018, 38(11): 42-50.
[12] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[13] 赵许朋,赵晓朋,施豪,陈学梅,姜婷,刘燕. ‘贵长’猕猴桃叶片高效直接再生体系的建立 *[J]. 中国生物工程杂志, 2018, 38(10): 48-54.
[14] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[15] 赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.