Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (10): 82-89    DOI: 10.13523/j.cb.20181010
综述     
杂交瘤细胞体外大规模培养研究进展
孙静静,周伟伟,周雷鸣,赵巧辉(),李桂林
郑州安图生物工程股份有限公司 郑州 450016
Advance in Large-Scale Culture of Hybridoma Cells in Vitro
Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO(),Gui-lin LI
Zhengzhou Autobio Diagnostic Co,LTD,Zhengzhou 450016,China
 全文: PDF(736 KB)   HTML
摘要:

单克隆抗体在生物学和医学研究领域中显示了极大的应用价值,是免疫检验中的新型试剂,是生物治疗的导向武器。作为医学检验试剂,单克隆抗体可以充分发挥其优势,如特异性好,灵敏度高,更便于质量控制,利于标准化和规范化。传统的方法是利用小鼠腹水制备单克隆抗体,但是近几十年杂交瘤细胞体外大规模培养制备单克隆抗体技术也在不断发展。特别是单克隆抗体在疾病诊断和治疗方面的需求,更进一步促进了杂交瘤细胞体外培养生产技术的发展,体外培养杂交瘤细胞生产的单克隆抗体已应用到许多方面。由于杂交瘤细胞的半贴壁性质,无论是悬浮培养还是贴壁培养,均可进行杂交瘤细胞的体外大规模培养。针对应用于体外诊断试剂的杂交瘤细胞体外培养制备单克隆抗体进行综述,主要包括中空纤维细胞培养和生物反应器细胞培养方法,以及不同培养方法优化的进展。

关键词: 杂交瘤细胞单克隆抗体生物反应器中空纤维    
Abstract:

Monoclonal antibodies have shown great value in the field of biology and medical research. They are new reagents in immunoassays and are the guided weapons for biological therapy. As a diagnostic reagent in vitro, monoclonal antibody can give full play to its advantages, such as good specificity, high sensitivity, and more convenient for quality control, which is conducive to standardization .Traditionally,mouse ascites were used to prepare monoclonal antibodies. Now monoclonal antibodies are also being developed in large-scale cultures of hybridoma cells in vitro. In particular, the needs of monoclonal antibodies in the diagnosis and treatment of diseases have further promoted the development of invitro culture and production techniques for hybridoma cells. Due to the semi-adherent nature of the hybridoma cells, both in suspension and adherent culture, large-scale invitro culture of hybridoma cells can be performed. This article reviews the invitro culture techniques of hybridoma cells, including hollow fiber cell culture system and bioreactor cell culture sysytem, as well as the optimization of different culture methods.

Key words: Hybridoma    Monoclonal antibody    Bioreactor    Hollow fiber
收稿日期: 2018-04-28 出版日期: 2018-11-09
ZTFLH:  Q813  
通讯作者: 赵巧辉     E-mail: zhaoqiaohui@autobio.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙静静
周伟伟
周雷鸣
赵巧辉
李桂林

引用本文:

孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.

Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro. China Biotechnology, 2018, 38(10): 82-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181010        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I10/82

图1  生物反应器制备单克隆抗体上游成本
图2  中空纤维系统制备单克隆抗体上游成本
生物反应器(旋转过滤器) 中空纤维系统(1柱) 中空纤维系统(8柱/批)
中空柱外腔体积 - 70ml 70ml
生物反应器体积 10 L - -
接种密度 105 cells/ml 108 cells 108 cells
最大细胞密度 107 cells/ml 108 cells/ml 108 cells/ml
抗体比生产速率 20pg/cell/d 20pg/cell/d 20pg/cell/d
抗体生产速率 0.2mg/ml/d 400mg/2d 3.2g/2天
生长阶段培养基消耗量 10L 3.75L 30L
生产阶段培养基消耗量 12L/d 2L/d 16L/d
每批培养基总消耗量 265L 110L 880L
收获体积 12L/d 70ml/2d 560ml/2d
每批收获总体积 225L 1.86L 14.9L
抗体浓度 0.17mg/ml 5.7mg/ml 5.7mg/ml
批产能 42.5g 10.6g 85g
批周期 29d/批
10批/年
60d/批 60d/批
8柱/批
5批/年
表1  生物反应器和中空纤维系统比较
图3  中空纤维细胞培养横截面[8]
过程参数变化 效应 参考文献
溶氧 DO%(升高) mAb Qp(升高)
qGluc(降低)
qLac(降低)
[17]
通气(升高) 气泡增多
活细胞密度(降低)
[27]
温度改变(降低) qGrowth rate(下降)
mAb Qp(升高)
qGluc(降低)
qLac(降低)
[16]
接种密度 抗体电荷分布改变 [24]
pH改变(降低) qGrowth rate(下降)
活细胞密度(升高)
抗体分泌(升高)
[18]
补料 抗体分泌(升高) [20]
非必须氨基酸 抗体分泌(升高),而不影响糖型 [21]
脂肪酸 抗体分泌(升高) [28]
皮质醇 细胞活率(升高)
抗体分泌(升高
[22]
表2  常见的培养过程参数变化产生影响
[1] 张元兴, 魏明旺, 董志峰 . 杂交瘤细胞的大量培养. 生物工程进展, 1997,17(5):54-60.
Zhang Y X, Wei M W, Dong Z F . Large scale culture of hybridoma cells. Advances in Environmental Bioengineering, 1997,17(5):54-60.
[2] 辛彦斌, 薛小平, 朱美福 , 等. 杂交瘤细胞体外大量培养研究的进展, 细胞与分子免疫学杂志, 1990,6(2):63-66.
Xin Y B, Xue X P, Zhu M F , et al. Advances of large-scale culture of hybridoma cells in vitro. Journal of Cellular and Molecular Immunology, 1990,6(2):63-66.
[3] Carson K L . Flexibility the guiding principle for antibody manufacturing. Nat Biotechnol. 2005,23(9):1054-1058.
doi: 10.1038/nbt0905-1054 pmid: 16151390
[4] Rodrigues M E, Costa A R, Henriques M , et al. Technological progresses in monoclonal antibody production systems. Biotechnol Prog, 2010,26(2):332-351.
doi: 10.1002/btpr.348 pmid: 20043321
[5] Heine H, Biselli M, Wandrey C . High cell density cultivation of hybridoma cells:Spin filter vs immobilized culture. Animal Cell Technology:Products from Cells, Cells as Products, 1999, 83-85.
doi: 10.1007/0-306-46875-1_18
[6] Vermasvuori R, Hurme M . Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes. Biotechnology Progress, 2011,27(6):1588-1598.
doi: 10.1002/btpr.676 pmid: 21954092
[7] 李峻城, 姜述德 . 中空纤维细胞培养技术.国外医学:预防. 诊断, 1989 ( 1):1-4.
Li J C, Jiang S D . Hollow fiber cell culture technology.Foreign Medicine:Prevention. Diagnosis, 1989 ( 1):1-4.
[8] John J S. 中空纤维细胞培养的新进展. 中国实验室, 2005,4:21-27.
John J S . New developments in hollow-fiber cell culture. China Laboratory, 2005,4:21-27.
[9] Jain E, Kumar A . Upstream processes in antibody production:Evaluation of critical parameters, Biotechnology Advances. 2008,26(1):46-72.
doi: 10.1016/j.biotechadv.2007.09.004
[10] Legazpi L, Laca A, Collado S , et al. Diffusion and inhibition processes in a hollow-fiber membrane bioreactor for hybridoma culture.Development of a mathematical model. Chem Biochem Eng Q, 2016,30(2):213-225.
doi: 10.15255/CABEQ
[11] Van E R, Adorf M, Sommeren A P , et al. Monitoring of the production of monoclonal antibodies by hybridomas.Part I:Long-term cultivation in hollow fibre bioreactors using serum-free medium. Journal of Biotechnolog, 1991,20(3) : 249-261.
doi: 10.1016/0168-1656(91)90298-A pmid: 1367572
[12] Jackson L R, Trudel L J, Fox J G , et al. Evaluation of hollow fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. Journal of Immunological Methods, 1996,189(2):217-231.
doi: 10.1016/0022-1759(95)00251-0 pmid: 8613673
[13] Takenouchi S, Sugahara T . Lactate dehydrogenase enhances immunoglobulin production by human hybridoma and human peripheral blood lymphocytes, Cytotechnology, 2003,42(3):133-143.
doi: 10.1023/B:CYTO.0000015838.06536.de pmid: 19002935
[14] Jain E, Kumar A . Upstream processes in antibody production:Evaluation of critical parameters. Biotechnology Advances, 2008,26(1):46-72.
[15] Ayyildiz-Tamis D, Nalbantsoy A, Elibol M , et al. Effect of operating conditions in production of diagnostic salmonella enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems. Appl Biochem Biotechnol, 2014,172(1):224-236.
doi: 10.1007/s12010-013-0532-4 pmid: 24068476
[16] Chen Z L, Wu B C, Liu H , et al. Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture. J Biosci Bioeng, 2004,97(4):239-243.
doi: 10.1016/S1389-1723(04)70198-X pmid: 16233622
[17] Ogawa T, Kamihira M, Yoshida H , et al. Effect of dissolved-oxygen concentration on monoclonal-antibody production in hybridoma cell-cultures. J Ferment Bioeng, 1992,74(6):372-378.
doi: 10.1016/0922-338X(92)90034-R
[18] Trummer E, Fauland K, Seidinger S , et al. Process parameter shifting: Part I.Effect of DOT,pH,and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng, 2006,94(6):1033-1044.
doi: 10.1002/(ISSN)1097-0290
[19] Abu-Reesh I, Kargi F . Biological responses of hybridoma cells to hydrodynamic shear in an agitated bioreactor. Enzyme Microb Technol, 1991,13(11):913-919.
doi: 10.1016/0141-0229(91)90108-M pmid: 1368002
[20] Lu F, Toh P C, Burnett I , et al. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnol Bioeng, 2013,110(1):191-205.
doi: 10.1002/bit.24602
[21] Read E K, Bradley S A, Smitka T A , et al. Fermentanomics informed amino acid supplementation of an antibody producing mammalian cell culture. Biotechnol Prog, 2013,29(3):745-753.
doi: 10.1002/btpr.1728 pmid: 23606649
[22] Rouiller Y, Perilleux A, Marsaut M , et al. Effect of hydrocortisone on the production and glycosylation of anFc-fusion protein in CHO cell cultures. Biotechnol Prog, 2012,28(3):803-813.
doi: 10.1002/btpr.1530 pmid: 22535835
[23] Madhavarao C N, Agarabi C D, Wong L , et al. Evaluation of butyrateinduced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors. Biotechnol Appl Biochem, 2014,61(2):184-192.
doi: 10.1002/bab.1151 pmid: 24033810
[24] Banerjee A, Ma N N, Ramasubramanyan N . Designing in quality: Approaches to defining the design space for a monoclonal antibodyprocess. Biopharm Int, 2010,23(5):26-40.
[25] Chee Furng Wong D, Tin Kam Wong K, Tang Goh L , et al. Impact of dynamic online fed-batch strategies on metabolism,productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng, 2005,89(2):164-177.
doi: 10.1002/bit.20317 pmid: 15593097
[26] Hasegawa H, Wendling J, He F , et al. In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO) cells. J Biol Chem, 2011,286(22):19917-19931.
doi: 10.1074/jbc.M110.204362 pmid: 3103367
[27] Handa A, Emery A N, Spier R E . On the evaluation of gasliquid interfacial effects on hybridoma viability in bubble column bioreactors. Developments in Biological Standardization, 1987,66(4):241-253.
doi: 10.1016/0141-0229(89)90097-5 pmid: 3582753
[28] Butler M, Huzel N . The effect of fatty acids on hybridoma cell growth and antibody productivity in serum-free cultures. Journal of Biotechnology, 1995,39(2):165-173.
doi: 10.1016/0168-1656(95)00017-K
[29] Agarabi C D, Schiel J E, Lute S C , et al. Bioreactor process parameter screening utilizing a plackett-burman design for a model monoclonal antibody.[J] Pharm Sci. 2015,104(6):1919-1928.
doi: 10.1002/jps.24420 pmid: 25762022
[30] Zhang L, Shen H, Zhang Y X . Fed-batch culture of hybridoma cells in serum-free medium using an optimized feeding strategy, Journal of Chemical Technology & Biotechnology. 2004,79(2):171-181.
doi: 10.1002/jctb.940
[31] Jo E C, Park H J, Kim D I , et al. Repeated fed-batch culture of hybridoma cells in nutrient-fortified high-density medium. Biotechnology and Bioengineering, 1993,42(10):1229-1237.
doi: 10.1002/bit.260421013 pmid: 18609672
[32] 郭纪元 . CHO DG44稳定细胞株无血清培养基的研发与优化. 厦门:厦门大学, 2014.
Guo J Y . Development and optimization of the serum-free medium for CHO DG44 stable cell line. Xiamen:Xiamen University, 2014.
[33] 刘美 . GS-CHO细胞培养工艺优化. 哈尔滨:东北农业大学, 2012.
Liu M . Process optimization for GS-CHO cells culture. Harbin: Northeast Agricultural University, 2012.
[34] 蒋金龙 . 基于脂类代谢的DHFR-CHO细胞培养过程开发与优化. 上海:华东理工大学, 2015.
doi: 10.15889/j.issn.1002-1302.2016.01.008
Jiang J L . Process development and optimization for DHFR-CHO cells based on lipid metabolism. Shanghai:East China University of Science and Technology, 2015.
doi: 10.15889/j.issn.1002-1302.2016.01.008
[35] Xie L, Wang D I . Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology, 1994,15(1):17-29.
doi: 10.1007/BF00762376 pmid: 7765929
[36] Xie L, Wang D I . Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnology and Bioengineering, 1994,43(11):1175-1189.
doi: 10.1002/bit.21160 pmid: 18615531
[37] Xie L, Wang D I . Different medium design concepts and feeding strategies. Biotechnology and Bioengineering, 1993,95(2):271-284.
[38] Shibuya K, Haga R, Namba M . A serum substitute for fed-batch culturing of hybridoma cells. Cytotechnology, 2008,57(2):187-197.
doi: 10.1007/s10616-008-9155-y pmid: 2553663
[39] Gek Kee Chua . Development of a low serum medium for the production of monoclonal antibody against congenital adrenal hyperplasia by hybridoma culture. Preparative Biochemistry and Biotechnology, 2016,46(7):679-689.
doi: 10.1080/10826068.2015.1135450 pmid: 26760282
[40] Cherlet M, Marc A . Stimulation of monoclonal antibody production of hybridoma cells by butyrate: evaluation of a feeding strategy and characterization of cell behaviour. Cytotechnology, 2000,32(1):17-29.
doi: 10.1023/A:1008069523163 pmid: 3449445
[41] Rokni M, Razavi A R, Shokri F , et al. Enhancement of monoclonal antibody production after single and combination treatment of the hybridoma cells with all-trans retinoic acidand docosahexaenoic acid: An in vitro and in vivo study. International Immunopharmacology. 2018,59:295-300.
doi: 10.1016/j.intimp.2018.03.008 pmid: 29677631
[42] Konno Y, Aoki M, Takagishi M , et al. Enhancement of antibody production by the addition of coenzyme-Q (10). Cytotechnology, 2011,63(2):163-170.
doi: 10.1007/s10616-010-9330-9 pmid: 3080474
[1] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[2] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[3] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[4] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[5] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[6] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[7] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[8] 高倩,江洪,叶茂,郭文娟. 全球单克隆抗体药物研发现状及发展趋势 *[J]. 中国生物工程杂志, 2019, 39(3): 111-119.
[9] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[10] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[11] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[12] 徐婧雯,张雪梅,吴忠香,朱文兵,蒋曦,巩蔚,严丽蔚,宋杰,李慧,董少忠. 抗树鼩CD3ε单克隆抗体的制备及生物学特性鉴定[J]. 中国生物工程杂志, 2018, 38(4): 54-62.
[13] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[14] 毛开云,范月蕾,王恒哲,王跃,陈大明. 全球PD-1/PD-L1单克隆抗体市场竞争格局 *[J]. 中国生物工程杂志, 2018, 38(11): 103-115.
[15] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.