Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (1): 55-62    DOI: 10.13523/j.cb.20190107
技术与方法     
利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *
宋奕1,**,张翠云1,李奕1,张素素1,潘舜1,陶云云1,许璐摇1,何华成2,***(),吴疆1,***()
1 温州医科大学药学院 温州 325035
2 温州大学化学与材料工程学院 温州 325035
Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology
Yi SONG1,**,Cui-yun ZHANG1,Yi LI1,Su-su ZHANG1,Shun PAN1,Yun-yun TAO1,Lu-yao XU1,Hua-cheng HE2,***(),Jiang WU1,***()
1 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
2 College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
 全文: PDF(1153 KB)   HTML
摘要:

目的:制备具有碱性成纤维细胞生长因子缓释性能手术缝纫线的复合材料,并探究其机械性能和体外释药情况。方法:利用静电纺丝技术,通过研究复合材料中物质成分的配比,优化包载效率,并研究聚己内酯-胶原复合结构 (PCL-Col) 对可控释放 bFGF 的影响来制备具有生物活性与药物缓释性能的手术缝纫线;观察缝纫线微观结构,检测缝纫线机械性能和载药量。结果:通过扫描电镜结果证明载药的手术缝纫线具有完整的线状结构。进一步通过拉伸与拉伸循环实验证明缝纫线具有良好的机械性能,最后通过酶联免疫吸附实验 (enzyme linked immunosorbent assay,ELISA) 证明所制备的手术缝纫线具备一定的药物缓释性能。结论:通过静电纺丝装置,优化纺丝参数,成功制备了PCL-Col-bFGF的手术缝线复合材料。该缝纫线满足缝合所需要的机械性能同时具备一定的bFGF缓释性能。

关键词: 静电纺丝生长因子机械性能缓释性能    
Abstract:

Objective: Composite materials that surgical sewing thread with basic fibroblast growth factor slow release performance were prepared, and exploring its mechanical properties and in vitro release.Methods:By means of electrospinning technology, the efficiency of packaging was optimized by studying the ratio of material composition in composite materials. Furthermore, the influence of polycaprolactone-collagen composite structure (PCL-Col) on the controllable release of bFGF was studied, to prepare the surgical sewing thread with biological activity and drug sustained release performance. Finally, the microstructure of the sewing thread was observed, and the mechanical properties and the drug loading capacity were measured.Results:The results of scanning electron microscopy (SEM) showed that the surgical sewing thread had a complete linear structure. It is proved that the sewing thread has good mechanical properties by stretching and stretching cycle experiments. Finally, enzyme linked immune sorbent assay (enzyme linked immunosorbent assay,ELISA) proved that the surgical sewing thread had a certain of drug release properties.Conclusion:By using electrospinning device and optimizing spinning parameters, PCL-Col-bFGF surgical suture composite was successfully prepared. The sewing thread meets the mechanical properties requirement of suturing and has bFGF sustained release performance.

Key words: Electrospinning    Growth factor    Mechanical property    Slow release performance
收稿日期: 2018-06-23 出版日期: 2019-02-28
ZTFLH:  Q813  
基金资助: * 2018年浙江省大学生科技创新活动计划暨新苗人才计划大学生科技创新项目(2018R413019);国家级大学生创新创业训练计划项目资助项目(201810343001)
通讯作者: 宋奕,何华成,吴疆     E-mail: hehc@wzu.ed.cn;woody870402@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋奕
张翠云
李奕
张素素
潘舜
陶云云
许璐摇
何华成
吴疆

引用本文:

宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.

Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology. China Biotechnology, 2019, 39(1): 55-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190107        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I1/55

图1  PCL-Col-bFGF纳米纤维的制备流程图
组别 1 2 3 4 5 6 7
聚己内酯(g) 0.45 0.45 0.45 0.68 0.68 0.68 0.91
六氟异丙醇(ml) 6.50 6.75 7.00 6.50 6.75 7.00 6.75
水(ml) 0.50 0.25 0 0.50 0.25 0 0.25
鼠尾胶原蛋白(mg) 226.3 226.3 226.3 226.3 226.3 226.3 226.3
bFGF(μl) 113 113 113 113 113 113 113
体系均匀程度 bFGF析出 bFGF析出 体系不均匀
机械性能 + + + ++ +++ +++ -
表1  各物质配比设计
静电纺丝参数 电压(kV) 距离(cm) 喷速(mm/h) 接受器转速
(r/min)
时间(min) 均匀程度 机械性能
1 6 12 1.08 300 5 + +
2 6 12 2.16 300 5 ++ +
3 6 12 3.24 300 5 + ++
4 12 12 1.08 300 5 ++ ++
5 12 12 2.16 300 5 +++ +++
6 12 12 3.24 300 5 + +
7 18 12 1.08 300 5 ++ +
8 18 12 2.16 300 5 ++ ++
9 18 12 3.24 300 5 + +
表2  静电纺丝各参数大小
图2  包载bFGF微粒缝纫线的合成和表征
图3  载药手术缝纫线单次拉伸图
弹性模量 (杨氏拉伸应力
5%~10%)(MPa)
最大拉伸应力(MPa) 拉伸应变(位移)
在断裂(标准)(%)
PCL 0.011 62±0.002 60 0.002 43±0.000 30 69.837 19±0.281 72
PCL+Col 0.016 20±0.000 67 0.002 83±0.000 34 66.326 75±1.854 87
PCL+Col+bFGF 0.015 71±0.000 33 0.002 31±0.000 25 69.839 13±2.025 80
表3  三组线弹性模量、最大拉伸应力、断裂时拉伸应变对比
图4  载药手术缝纫线循环拉伸图
第一次循环
(J/m3)
第二次循环
(J/m3)
第三次循环
(J/m3)
PCL 0.831 7 2.175 1 3.185 8
PCL+Col 0.741 2 2.094 7 2.999 3
PCL+Col+bFGF 0.857 8 2.212 1 2.999 6
表4  三组循环拉伸损耗量表
图5  亲水性水接触角检测
时间(h) 在纯水中释放量
(ng)
在PBS溶液中释放量
(ng)
6 50.11 48.06
12 90.34 95.31
24 128.60 138.73
48 163.19 184.13
72 197.72 229.30
96 236.99 273.99
120 275.30 320.51
144 301.86 366.70
168 337.99 410.83
表5  手术缝纫线载药释放检测
[1] Li J H, Linderman S W, Zhu C L , et al. Surgical sutures with porous sheaths for the sustained release of growth factors. Advanced Materials, 2016,28(23):4620-4624.
doi: 10.1002/adma.201506242 pmid: 4938160
[2] Obermeier A, Schneider J, Harrasser N , et al. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI). PLoS One, 2018,13(1):e0190912.
doi: 10.1371/journal.pone.0190912 pmid: 29315313
[3] Kim H, Kim B H, Huh B K , et al. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for enhanced anti-inflammatory effect. Biomaterials Science, 2017,5(8):1670-1677.
doi: 10.1039/c7bm00345e pmid: 28715515
[4] Muller D A, Snedeker J G, Meyer D C . Two-month longitudinal study of mechanical properties of absorbable sutures used in orthopedic surgery. Journal of Orthopaedic Surgery and Research, 2016,11(1):111.
doi: 10.1186/s13018-016-0451-5 pmid: 5059988
[5] Moon S, Gil M, Lee K J . Syringeless electrospinning toward versatile fabrication of nanofiber web. Scientific Reports, 2017,7:41424.
doi: 10.1038/srep41424
[6] McClellan P, Landis W J . Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Bioresearch Open Access, 2016,5(1):212-227.
doi: 10.1089/biores.2016.0022 pmid: 5003012
[7] Scaffaro R, Lopresti F, Botta L . Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning. European Polymer Journal, 2017,96:266-277.
doi: 10.1016/j.eurpolymj.2017.09.016
[8] Abdian N, Ghasemi-Dehkordi P, Hashemzadeh-Chaleshtori M , et al. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank, 2015,16(4):487-495.
doi: 10.1007/s10561-015-9494-9 pmid: 25605061
[9] Han U, Park H H, KimY J , et al. Efficient encapsulation and sustained release of basic fibroblast growth factor in nanofilm: extension of the feeding cycle of human induced pluripotent stem cell culture. ACS Applied Materials & Interfaces, 2017,9(30):25087-25097.
doi: 10.1021/acsami.7b05519 pmid: 28686012
[10] Palama I E, Arcadio V, D’Amone S , et al. Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Scientific Reports, 2017,7(1):12672.
doi: 10.1038/s41598-017-12824-3 pmid: 28978922
[11] Luo X S, Guo Z Z, He P , et al. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. International Journal of Biological Macromolecules, 2018,113:476-486.
doi: 10.1016/j.ijbiomac.2018.01.179 pmid: 29391224
[12] Shi C Y, Chen W, Chen B , et al. Bladder regeneration in a canine model using a bladder acellular matrix loaded with a collagen-binding bFGF. Biomaterials Science, 2017,5(12):2427-2436.
doi: 10.1039/C7BM00806F
[13] Qian Y Z, Chen H B, Xu Y , et al. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I. International Journal of Nanomedicie, 2016,11:4157-4171.
doi: 10.2147/IJN.S110577 pmid: 5003594
[14] Kuchi C, Harish G S, Reddy P S . Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceramics International, 2018,44:5266-5272.
doi: 10.1016/j.ceramint.2017.12.138
[15] Xu H L, Chen P P, ZhuGe D L , et al. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Advanced Healthcare Materials, 2017,6(19):1700344.
doi: 10.1002/adhm.201700344 pmid: 28661050
[16] Drosou C, Krokida M, Biliaderis C G . Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 2018,77:726-735.
doi: 10.1016/j.foodhyd.2017.11.014
[17] Bideau B, Bras J, Saini S , et al. Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C, 2016,69:977-984.
doi: 10.1016/j.msec.2016.08.005
[18] Dohmen J, Grunewald N, Otto F , et al. Micro structures in thin coating layers: micro structure evolution and macroscopic contact angle. Mathematics - Key Technology for the Future, 2008,XVIII(357):75-97.
doi: 10.1007/978-3-540-77203-3_7
[19] Yang Y, Xia T, Zhi W , et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials, 2011 , 32(18) : 4243-4254.
doi: 10.1016/j.biomaterials.2011.02.042 pmid: 21402405
[20] Chen H L, Blitterswijk C V, Mota C , et al. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. Acs Applied Materials & Interfaces, 2017,9(44):38187-38200.
doi: 10.1021/acsami.7b07151 pmid: 5682611
[21] Buzgo M, Filova E, Staffa A M , et al. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. Journal of Tissue Engineering and Regenerative Medicine, 2017,12(3) : 583-597.
doi: 10.1002/term.2474 pmid: 28508471
[22] Kim Y S, Gulfam M, Lowe T L . Thermoresponsive- co-biodegradable linear-dendritic nanoparticles for sustained release of nerve growth factor to promote neurite outgrowth. Molecular Pharmaceutics, 2018,15(4):1467-1475.
doi: 10.1021/acs.molpharmaceut.7b01044
[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[4] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[5] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[6] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[7] 刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.
[8] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[9] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[10] 龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.
[11] 邓春平, 杨波, 梅雄, 郑赞顺, 曲伟. 重组碱性成纤维细胞生长因子游离巯基的测定分析[J]. 中国生物工程杂志, 2016, 36(6): 76-80.
[12] 王小花, 李玉婷, 刘亚威, 桂金秋, 周晓杭, 袁晓环, 初彦辉, 刘海峰. 突变型人HGF(tvNK1)对CCl4诱导的大鼠肝纤维化的影响[J]. 中国生物工程杂志, 2016, 36(6): 18-23.
[13] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[14] 李锐, 蔡平讨, 叶丽冰, 张宏宇, 肖健. [PEAD:肝素:NGF]生物材料促进大鼠坐骨神经损伤恢复[J]. 中国生物工程杂志, 2016, 36(2): 68-72.
[15] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.