Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 123-131    DOI: 10.13523/j.cb.20191114
综述     
微生物异源合成植物异喹啉生物碱的新进展 *
马雅婷1,刘珍宁1,刘雪1,於洪建2,赵广荣1,**()
1 天津大学化工学院 教育部合成生物学前沿科学中心 系统生物工程教育部重点实验室 天津 300350
2 天津益倍生物科技集团 天津 300450
Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes
MA Ya-ting1,LIU Zhen-ning1,LIU Xue1,YU Hong-jian2,ZHAO Guang-rong1,**()
1 School of Chemical Engineering and Technology, Tianjin University, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300350, China
2 Ubasio Biotech Co. , Ltd. , Tianjin 300450, China
 全文: PDF(979 KB)   HTML
摘要:

植物异喹啉生物碱(plant isoquinoline alkaloids,PIAs)包括吗啡、可待因、加兰他敏及小糵碱等药用活性产物和其他天然活性产物。从植物中提取异喹啉生物碱,受制于低含量、种植季节及提取方法。人们开始研究利用微生物异源合成和改造天然异喹啉生物碱,从而获得低成本的药用活性物质。异喹啉生物碱合成途径长,反应复杂,为实现微生物异源合成带来了诸多挑战。随着合成途径和酶的解析和鉴定,合成生物学技术为在微生物中合成异喹啉生物碱提供了可能。综述了PIAs合成途径解析的最新进展,以及微生物异源合成PIAs的代谢工程策略,讨论了目前存在的问题和未来的发展趋势。

关键词: 植物异喹啉生物碱微生物合成合成生物学代谢工程天然药物    
Abstract:

Plant isoquinoline alkaloids (PIAs) include morphine, codeine, galantamine, berberine and other pharmaceutically active products. Currently, most high-value PIAs are extracted from plants, which is limited by low concentration in nature, seasonal production and extraction methods. Microbial biosynjournal provides an alternative way to gain PIAs at low cost, however, the long and complex biosynjournal pathways of PIAs bring it many challenges. With the development of synthetic biology and biotechnology, many progresses are made in the pathway elucidations and enzyme identifications, which make it possible to achieve the biosynjournal of PIAs in heterologous microbes. Recent advances in the PIAs pathway elucidations and metabolic engineering in heterologous microbes are reviewed, and current challenges as well as future perspectives are discussed.

Key words: Plant    isoquinoline    alkaloids    Microbial    synjournal    Synthetic    biology    Metabolic    engineering    Natural    drug
收稿日期: 2019-03-23 出版日期: 2019-12-17
ZTFLH:  Q946.88  
基金资助: * 国家自然科学基金(31870077)
通讯作者: 赵广荣     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马雅婷
刘珍宁
刘雪
於洪建
赵广荣

引用本文:

马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.

MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes. China Biotechnology, 2019, 39(11): 123-131.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191114        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/123

图1  PIAs的生源
图2  罂粟11号染色体上的苄基异喹啉生物碱基因簇
图3  诺斯卡品的合成途径
图4  吗啡的合成途径
产物 功能元件(来源物种) 前体 异源宿主菌 参考文献
(S)-网状
番荔枝碱
PTPS、SepR、PCD、QDHPR、TyrH(褐家鼠),DODC(恶臭假单胞菌),NCS(日本黄连),6OMT、CNMT、 4'OMT、CPR(鸦片罂粟),CYP80B1(加州罂粟) 葡萄糖 酿酒酵母 [25]
四氢小蘖碱 CAS(日本黄连),MT1、BBE(鸦片罂粟),ATR1(拟南芥) (S)-网状番荔枝碱 酿酒酵母 [26]
诺斯卡品 MT1、TNMT、CYP82Y1、CYP82X2、 AT1、CYP82X1、CXE1、SDR1、MT2、MT3(鸦片罂粟),CAS(日本黄连),ATR1(拟南芥) (S)-四氢小蘖碱 酿酒酵母 [20]
诺斯卡品 6OMT、 CNMT、 4'OMT、 CPR、 BBE、MT1、TNMT、 CYP82Y1、CYP82X2、AT1、CYP82X1、CXE1、SDR1、MT2、MT3(鸦片罂粟),DODC(恶臭假单胞菌),NMCH(加州罂粟),CAS(日本黄连),SepR、PTPS、QDHPR、PCD、DHFR、TyrH(褐家鼠) 葡萄糖 酿酒酵母 [9]
(S)-网状
番荔枝碱
MAO(藤黄微球菌),DODC(恶臭假单胞菌),TYR(青枯雷尔氏菌),NCS、6OMT、CNMT、4OMT(日本黄连) 甘油 大肠杆菌 [27]
(S)-网状
番荔枝碱
DODC(恶臭假单胞菌),CYP76AD1(甜菜),NCS、6OMT、CNMT、4OMT、NMCH(鸦片罂粟) 葡萄糖 酿酒酵母 [28]
蒂巴因 SAS、CPR、SAR、SAT(鸦片罂粟) (R)-网状番荔枝碱 酿酒酵母 [29]
吗啡 T6ODM、COR、CODM(鸦片罂粟) 蒂巴因 酿酒酵母 [30]
蒂巴因 PTPS、SepR、PCD、QDHPR、TyrH、DHFR(褐家鼠),DODC(恶臭假单胞菌),NCS(日本黄连),6OMT、CNMT、4'OMT、CPR、SalAT(鸦片罂粟),NMCH(加州罂粟),SalR、DRS-DRR(大红罂粟),CFS-SalSyn:CFS(加州罂粟)、SalSyn(大红罂粟) 葡萄糖 酿酒酵母 [8]
蒂巴因 TYR(青枯雷尔氏菌),DODC(恶臭假单胞菌),MAO(藤黄微球菌),CNMT、4'OMT(日本黄连),SalScut、SalR、 SalAT(鸦片罂粟),ATR2(拟南芥) 葡萄糖甘油 大肠杆菌 [31]
木兰花碱 MAO(藤黄微球菌),NCS、6OMT、CNMT、4'OMT、CYP80G2(日本黄连) 多巴胺 大肠杆菌
酿酒酵母
[34]
血根碱 ATR1(拟南芥),CFS、STS、P6H(加州罂粟),6OMT、OMT、CNMT、BBE、TNMT、MSH(鸦片罂粟) (R,S)-去甲劳丹碱 酿酒酵母 [35]
小蘖碱 CAS(日本黄连)、MT1、BBE(鸦片罂粟),ATR1(拟南芥),STOX(金花小蘖) (S)-网状番荔枝碱 酿酒酵母 [26]
表1  微生物异源合成苄基异喹啉生物碱
图5  微生物中(S)-网状番荔枝碱的合成途径重构
[1] Desgagne-Penix I, Hotchandani T . Heterocyclic amaryllidaceae alkaloids: biosynjournal and pharmacological applications. Current Topics in Medicinal Chemistry, 2017,17(4):418-427.
doi: 10.2174/1568026616666160824104052 pmid: 27558679
[2] He M M, Qu C R, Gao O D , et al. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Advances, 2015,5(21):16562-16574.
doi: 10.3390/molecules24234238 pmid: 31766438
[3] Li L, Dai H J, Ye M , et al. Lycorine induces cell-cycle arrest in the G0G1 phase in K562 cells via HDAC inhibition. Cancer Cell International, 2012,12(1):49-49.
doi: 10.1186/1475-2867-12-49 pmid: 23176676
[4] Foreman K E, Jesse J N, Kuo P C , et al. Emetine dihydrochloride: a novel therapy for bladder cancer. Journal of Urology, 2014,191(2):502-509.
doi: 10.1016/j.juro.2013.09.014
[5] Bessi I, Bazzicalupi C, Richter C , et al. Spectroscopic, molecular modeling, and NMR-spectroscopic investigation of the binding mode of the natural alkaloids berberine and sanguinarine to human telomeric G-Quadruplex DNA. ACS Chemical Biology, 2012,7(6):1109-1119.
doi: 10.1021/cb300096g
[6] Santoshi S, Naik P K . Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids.Journal of Computer- Aided Molecular Design, 2014,28(7):751-763.
doi: 10.1007/s10822-014-9756-9
[7] Dittbrenner A, Mock H P, Borner A , et al. Variability of alkaloid content in Papaver somniferum L. Journal of Applied Botany and Food Quality-Angewandte Botanik, 2009,82(2):103-107.
[8] Galanie S, Thodey K, Trenchard I J , et al. Complete biosynjournal of opioids in yeast. Science, 2015,349(6252):1095-1100.
doi: 10.1126/science.aac9373 pmid: 26272907
[9] Li Y, Li S, Thodey K , et al. Complete biosynjournal of noscapine and halogenated alkaloids in yeast. Proceedings of the National Academy of Sciences, 2018,115(17):3922-3911.
[10] Singh A, Massicotte M A, Garand A , et al. Cloning and characterization of norbelladine synthase catalyzing the first committed reaction in Amaryllidaceae alkaloid biosynjournal. BMC Plant Biology, 2018,18(1):338.
doi: 10.1186/s12870-018-1570-4 pmid: 30526483
[11] Kilgore M B, Augustin M M, Starks C M , et al. Cloning and characterization of a norbelladine 4'-O-methyltransferase involved in the biosynjournal of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One, 2014,9(7):e103223.
doi: 10.1371/journal.pone.0103223 pmid: 25061748
[12] Kilgore M B, Augustin M M, May G D , et al. CYP96T1 of Narcissus sp. aff. pseudonarcissus catalyzes formation of the para-para’ C-C phenol couple in the amaryllidaceae alkaloids. Frontiers in Plant Science, 2016,7:225.
doi: 10.3389/fpls.2016.00225 pmid: 26941773
[13] Kilgore M B, Holland C K, Jez J M , et al. Identification of a noroxomaritidine reductase with amaryllidaceae alkaloid biosynjournal related activities. Journal of Biological Chemistry, 2016,291(32):16740-16752.
doi: 10.1074/jbc.M116.717827 pmid: 27252378
[14] Nomura T, Quesada A L, Kutchan T M . The new-D-glucosidase in terpenoid-isoquinoline alkaloid biosynjournal in Psychotria ipecacuanha. Journal of Biological Chemistry, 2008,283(50):34650-34659.
doi: 10.1074/jbc.M806953200 pmid: 18927081
[15] Nomura T, Kutchan T M . Three new O-methyltransferases are sufficient for all O-methylation reactions of ipecac alkaloid biosynjournal in root culture of Psychotria ipecacuanha. Journal of Biological Chemistry, 2010,285(7):7722-7738.
doi: 10.1074/jbc.M109.086157 pmid: 20061395
[16] Cheong B E, Takemura T, Yoshimatsu K , et al. Molecular cloning of an O-methyltransferase from adventitious roots of Carapichea ipecacuanha. Journal of the Agricultural Chemical Society of Japan, 2011,75(1):107-113.
doi: 10.1271/bbb.100605 pmid: 21228475
[17] Guo L, Winzer T, Yang X F , et al. The Opium poppy genome and morphinan production. Science, 2018,362(6412):343-347.
doi: 10.1126/science.aat4096 pmid: 30166436
[18] Winzer T, Gazda V, He Z , et al. A Papaver somniferum 10-gene cluster for synjournal of the anticancer alkaloid noscapine. Science, 2012,336(6089):1704-1708.
doi: 10.1126/science.1220757 pmid: 22653730
[19] Dang T T, Chen X, Facchini P J . Acetylation serves as a protective group in noscapine biosynjournal in Opium poppy. Nature Chemical Biology, 2015,11(2):104-106.
doi: 10.1038/nchembio.1717 pmid: 25485687
[20] Li Y, Smolke C D . Engineering biosynjournal of the anticancer alkaloid noscapine in yeast. Nature Communications, 2016,7:12137.
doi: 10.1038/ncomms12137 pmid: 27378283
[21] Winzer T, Kern M, King A J , et al. Morphinan biosynjournal in Opium poppy requires a P450-oxidoreductase fusion protein. Science, 2015,349(6245):309-312.
doi: 10.1126/science.aab1852 pmid: 26113639
[22] Farrow S C, Hagel J M ,Beaudoin G A W, et al. Stereochemical inversion of(S)-reticuline by a cytochrome P450 fusion in Opium poppy. Nature Chemical Biology, 2015,11(9):728-732.
doi: 10.1038/nchembio.1879 pmid: 26147354
[23] Chen X, Hagel J M, Chang L , et al. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynjournal. Nature Chemical Biology, 2018,14(7):738-743.
doi: 10.1038/s41589-018-0059-7 pmid: 29807982
[24] 刘金凤, 黄鹏, 卿志星 , 等. 苄基异喹啉类生物碱生物合成与代谢工程研究进展. 基因组学与应用生物学, 2016,35(8):2194-2200.
Liu J F, Huang P, Qing Z X , et al. Advances in the biosynjournal and metabolic engineering research of benzylisoquinoline alkaloids. Genomics and Applied Biology, 2016,35(8):2194-2200.
[25] Trenchard I J, Siddiqui M S, Thodey K , et al. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metabolic Engineering, 2015,31:74-83.
doi: 10.1016/j.ymben.2015.06.010 pmid: 26166409
[26] Galanie S, Smolke C D . Optimization of yeast-based production of medicinal protoberberine alkaloids. Microbial Cell Factories, 2015,14(1):144.
doi: 10.1186/s12934-015-0332-3 pmid: 26376732
[27] Nakagawa A, Minami H, Kim J S , et al. A bacterial platform for fermentative production of plant alkaloids. Nature Communications, 2011,2(2):8.
doi: 10.1038/ncomms1327 pmid: 22179145
[28] DeLoache W C, Russ Z N, Narcross L , et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015,11(7):465-471.
doi: 10.1038/nchembio.1816 pmid: 25984720
[29] Fossati E, Narcross L, Ekins A , et al. Synjournal of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One, 2015,10(4):15
doi: 10.1097/PAF.0000000000000508 pmid: 31688050
[30] Thodey K, Galanie S, Smolke C D . A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology, 2014,10(10):837-844.
doi: 10.1038/NCHEMBIO.1613
[31] Nakagawa A, Matsumura E, Koyanagi T , et al. Total biosynjournal of opiates by stepwise fermentation using engineered Escherichia coli. Nature Communications, 2016,7:10390.
doi: 10.1038/ncomms10390 pmid: 26847395
[32] Brown S, Clastre M, Courdavault V , et al. De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences, 2015,112(11):3205-3210.
[33] Caputi L, Franke J, Farrow S C , et al. Missing enzymes in the biosynjournal of the anticancer drug vinblastine in Madagascar periwinkle. Science, 2018,360(6394):1235-1238.
doi: 10.1126/science.aat4100 pmid: 29724909
[34] Minami H, Kim J S, Ikezawa N , et al. Microbial production of plant benzylisoquinoline alkaloids. Proceedings of the National Academy of Sciences, 2008,105(21):7393-7398.
[35] Trenchard I J, Smolke C D . Engineering strategies for the fermentative production of plant alkaloids in yeast. Metabolic Engineering, 2015,30:96-104.
doi: 10.1016/j.ymben.2015.05.001 pmid: 25981946
[36] Minami H, Dubouzet E, Iwasa K , et al. Functional analysis of norcoclaurine synthase in Coptis japonica. Journal of Biological Chemistry, 2007,282(9):6274-6282.
doi: 10.1074/jbc.M608933200 pmid: 17204481
[37] Hawkins K M, Smolke C D . Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology, 2008,4(9):564-573.
doi: 10.1038/nchembio.105 pmid: 18690217
[38] Matsumura E, Nakagawa A, Tomabechi Y , et al. Microbial production of novel sulphated alkaloids for drug discovery. Scientific Reports, 2018,8(1):7980.
doi: 10.1038/s41598-018-26306-7 pmid: 29789647
[39] Chen W, Yao J, Meng J , et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynjournal. Nature Communications, 2019,10:12.
doi: 10.1038/s41467-018-07943-y pmid: 30602727
[40] Fossati E, Ekins A, Narcross L , et al. Reconstitution of a 10-gene pathway for synjournal of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature Communications, 2014,5:3283.
doi: 10.1038/ncomms4283 pmid: 24513861
[41] Lee H, Deloache W C, Dueber J E . Spatial organization of enzymes for metabolic engineering. Metabolic Engineering, 2012,14(3):242-251.
doi: 10.1016/j.ymben.2011.09.003
[42] Biggs B W, Paepe B D , Santos C N S , et al. Multivariate modular metabolic engineering for pathway and strain optimization .Current Opinion in Biotechnology. 2014,29(1):156-162.
doi: 10.1016/j.tibtech.2018.07.003 pmid: 30064888
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[5] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[8] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[11] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[14] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[15] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.