Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 113-122    DOI: 10.13523/j.cb.20191113
综述     
人工合成多样性突变文库研究进展*
王兆官,吴洋,齐浩
天津大学化工学院 系统生物工程教育部重点实验室 天津化学化工协同创新中心合成生物学平台 天津 300072
Research Progress in Synthetic Diverse Mutant Libraries
WANG Zhao-guan,WU Yang,QI Hao
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education,Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering,Tianjin University, Tianjin 300072, China
 全文: PDF(22698 KB)   HTML
摘要:

突变文库的构建是定向进化研究过程中一个关键步骤,主要利用天然存在的系统或者人工合成的分子技术来产生多样性核酸分子文库,为制备和筛选具有一定特性的蛋白酶、多肽、人工抗体等提供庞大的遗传基因库,也可用于合成生物学中相关基因元件的研究与筛选,为目标生物制品的高效工业化生产提供动力。随着对突变文库构建技术研究的日益深入,各种文库构建策略相继被开发出来,并在生物能源、生物化工、生物医药、生物试剂和食品工业等方面得到了广泛的应用。然而,定向进化中的文库构建策略多有不同,各种突变文库构建技术的核心方法也在不断创新。主要介绍近年来实验室中人工合成多样性文库的前沿技术,并对文库构建技术在自动化和智能化方向的发展进行了展望。

关键词: 定向进化体外突变人工合成基因文库    
Abstract:

The construction of mutant library is a key step in the process of directed evolution. It mainly utilizes the system of natural or synthetic molecular technique to generate the diversity of the nucleic acid molecular libraries. It also provides large genetic gene pool for the preparation and screening of protease, polypeptide and artificial antibodies with specific properties. Furthermore, it can be used in the study and selection of genetic element in synthetic biology, providing power to highly industrialized production of biological products. With the deepening of the research on the construction technology of mutant libraries, various library construction strategies have been developed and widely applied in the fields of bioenergy, biochemistry, biomedicine, biological reagent and food industry. However, the strategies of library construction in the directed evolution are different, and the core methods of various mutant library construction technologies are constantly innovated. Here it mainly elucidates the leading technologies of synthesizing multiplex libraries for the laboratory in recent years, and prospects for the development of library construction technology in the direction of automation and intellectualization.

Key words: Directed    evolution    In    vitro    mutation    Artificial    synjournal    Gene    library
收稿日期: 2019-02-17 出版日期: 2019-12-17
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21476167、21778039)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王兆官
吴洋
齐浩

引用本文:

王兆官,吴洋,齐浩. 人工合成多样性突变文库研究进展*[J]. 中国生物工程杂志, 2019, 39(11): 113-122.

WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries. China Biotechnology, 2019, 39(11): 113-122.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191113        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/113

图1  无装配的的突变文库构建策略
图2  几种突变文库装配策略
图3  几种基于单链DNA的突变文库构建策略
NameTarget of
mutation
Theoretic
library size
Modification
primers
EfficiencyReference
PFLF-MSDMLacZ(6) and (4)6.4 ×107No40%~80%[21]
In situ epPCRxynARandomNo50%~85%[32]
OD-SPMNeo (11)2.05×10145' phosphorylation100%[38]
POEPLacZ (8)3.2 ×106No100%[40]
TEDAphbCAB(3)8×103No90%[42]
OmniChangePhytase (5)3.2 ×1065'phosphorothioate100%[45]
Simple-MSSMeGFP (5)3.2 ×106No100%[48]
ICMGFP (2)400No94.5%[49]
MegAnnealscFvs200-750ntRandomNo37%~79%[55]
PFunkelBla (4)1.6 ×1055' phosphorylation70%[56]
Nicking MutagenesisBla (3)8×1035' phosphorylation50%[57]
Darwin AssemblyKOD (19)5.24×10245' phosphorylation98%~100%[58]
表1  部分突变技术介绍
[1] Arnold F H.Directed evolution: bringing new chemistry to life. Angewandte Chemie International Edition, 2018, 57(16): 4143-4148.
[2] Smith G P.Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-1317.
[3] Frenzel A, Schirrmann T, Hust M.Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016, 8(7): 1177-1194.
[4] Chen K, Arnold F H.Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences, 1993, 90(12): 5618-5622.
[5] He M Y, Khan F.Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Review of Proteomics, 2005, 2(3): 421-430.
[6] Boder E T, Wittrup K D.Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
[7] Deweid L, Neureiter L, Englert S, et al.Directed evolution of a bond-forming enzyme: ultrahigh-throughput screening of microbial transglutaminase using yeast surface display. Chemistry-a European Journal, 2018, 24(57): 15195-15200.
[8] Boder E T, Wittrup K D.Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
[9] Berrade L, Garcia A E, Camarero J A.Protein microarrays: novel developments and applications. Pharmaceutical Research, 2011, 28(7): 1480-1499.
[10] Packer M S, Liu D R.Methods for the directed evolution of proteins. Nature Reviews Genetics, 2015, 16(7): 379-394.
[11] Ahmad J, Javed F, Hayat M.Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods. Artificial Intelligence in Medicine, 2017, 78: 14-22.
[12] Miyazaki K, Takenouchi M.Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques, 2002, 33(5): 1033-1038.
[13] Miyazaki K.MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods in Enzymology, 2011, 498: 399-406.
[14] Chen W, Zhang S, Jiang P, et al.Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynjournal. Metabolic Engineering, 2015, 30: 149-155.
[15] Lu Y.Engineering Vibrio fischeri transcriptional activator LuxR for diverse transcriptional activities. Biotechnology Letters, 2016, 38(9): 1459-1463.
[16] Wan N W, Liu Z Q, Xue F, et al.An efficient high-throughput screening assay for rapid directed evolution of halohydrin dehalogenase for preparation of beta-substituted alcohols. Applied Microbiology and Biotechnology, 2015, 99(9): 4019-4029.
[17] Hogrefe H H, Cline J, Youngblood G L, et al.Creating randomized amino acid libraries with the QuikChange Multi Site-Directed Mutagenesis Kit. Biotechniques, 2002, 33(5): 1158-1165.
[18] Sawano A, Miyawaki A.Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Research, 2000, 28(16): e78-e78.
[19] Wells J A, Vasser M, Powers D B.Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene, 1985, 34(2-3): 315-323.
[20] Miyazaki K, Arnold F H.Exploring nonnatural evolutionary pathways by saturation mutagenesis: Rapid improvement of protein function. Journal of Molecular Evolution, 1999, 49(6): 716-720.
[21] Tseng W C, Lin J W, Hung X G, et al.Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Analytical Biochemistry, 2010, 401(2): 315-317.
[22] Tseng W C, Lin J W, Wei T Y, et al.A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry, 2008, 375(2): 376-378.
[23] Sullivan B, Walton A Z, Stewart J D.Library construction and evaluation for site saturation mutagenesis. Enzyme and Microbial Technology, 2013, 53(1): 70-77.
[24] Lajoie M J, Rovner A J, Goodman D B, et al.Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357-360.
[25] Leung D W.A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1989, 1: 11-15.
[26] Cadwell R C, Joyce G F.Randomization of genes by PCR mutagenesis. PCR Methods and Applications, 1992, 2(1): 28-33.
[27] Fujii R, Kitaoka M, Hayashi K.One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Research, 2004, 32(19): e145-e145.
[28] Fire A, Xu S Q.Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences, 1995, 92(10): 4641-4645.
[29] Liu D, Daubendiek S L, Zillman M A, et al.Rolling circle DNA synjournal: small circular oligonucleotides as efficient templates for DNA polymerases. Journal of the American Chemical Society, 1996, 118(7): 1587-1594.
[30] Dean F B, Nelson J R, Giesler T L, et al.Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Research, 2001, 11(6): 1095-1099.
[31] Lizardi P M, Huang X H, Zhu Z R, et al.Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998, 19(3): 225-232.
[32] Le Y, Chen H, Zagursky R, et al.Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Research, 2013, 20(4): 375-382.
[33] Luo X J, Zhao J, Li C X, et al.Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology and Bioengineering, 2016, 113(11): 2350-2357.
[34] Rigouin C, Nguyen H A, Schalk A M, et al.Discovery of human-like L-asparaginases with potential clinical use by directed evolution. Scientific Reports, 2017, 7(1): 10224.
[35] Ren X, Wang J, Yu H, et al.Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain. Bioresource Technology, 2016, 218: 623-630.
[36] Grimm D, Lee J S, Wang L, et al.In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. Journal of Virology, 2008, 82(12): 5887-5911.
[37] Herrmann A K, Bender C, Kienle E, et al.A robust and all-inclusive pipeline for shuffling of Adeno-associated viruses (AAV). Acs Synthetic Biology, 2018, 8(1): 194-206.
[38] Seyfang A, Jin J H Q.Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round. Analytical Biochemistry, 2004, 324(2): 285-291.
[39] Jin P, Kang Z, Zhang J, et al.Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. Acs Synthetic Biology, 2016, 5(3): 259-268.
[40] Peng R H, Xiong A S, Yao Q H.A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Applied Microbiology & Biotechnology, 2006, 73(1): 234-240.
[41] Ho S N, Hunt H D, Horton R M, et al.Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1): 51-59.
[42] Xia Y, Li K, Li J, et al.T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Research, 2019, 47(3): e15.
[43] Gibson D G, Young L, Chuang R Y, et al.Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343-345.
[44] Fu C, Donovan W P, Shikapwashya-Hasser O, et al.Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One, 2014, 9(12): e115318.
[45] Dennig A, Shivange A V, Marienhagen J, et al.OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One, 2011, 6(10): e26222.
[46] You C,Zhang Y H P,.Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 2012, 78(5): 1593-1595.
[47] You C, Zhang Y H P. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli. Analytical Biochemistry, 2012, 428(1): 7-12.
[48] Cheng F, Xu J M, Xiang C, et al.Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis. Biotechnology Letters, 2017, 39(4): 567-575.
[49] She W, Ni J, Shui K, et al.Rapid and error-free site-directed mutagenesis by a PCR-free in vitro CRISPR/Cas9-mediated mutagenic system. Acs Synthetic Biology, 2018, 7(9): 2236-2244.
[50] Kunkel T A.Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, 1985, 82(2): 488-492.
[51] Kunkel T A, Roberts J D, Zakour R A.Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology, 1987, 154: 367-382.
[52] Weiss G A, Watanabe C K, Zhong A, et al.Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proceedings of the National Academy of Sciences, 2000, 97(16): 8950-8954.
[53] Murase K, Morrison K L, Tam P Y, et al.EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. Chemistry & Biology, 2003, 10(2): 161-168.
[54] Scholle M D, Kehoe J W, Kay B K.Efficient construction of a large collection of phage-displayed combinatorial peptide libraries. Combinatorial Chemistry & High Throughput Screening, 2005, 8(6): 545-551.
[55] Pai J C, Entzminger K C, Maynard J A.Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli. Analytical Biochemistry, 2012, 421(2): 640-648.
[56] Firnberg E, Ostermeier M.PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One, 2012, 7(12): e52031.
[57] Wrenbeck E E, Klesmith J R, Stapleton J A, et al.Plasmid-based one-pot saturation mutagenesis. Nature Methods, 2016, 13(11): 928-930.
[58] Cozens C, Pinheiro V B.Darwin assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46(8): e51.
[59] Engler C, Kandzia R, Marillonnet S.A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11): e3647.
[60] Malyshev D A, Dhami K, Lavergne T, et al.A semi-synthetic organism with an expanded genetic alphabet. Nature, 2014, 509(7500): 385-388.
[61] Wang H H, Isaacs F J, Carr P A, et al.Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.
[62] Ronda C, Pedersen L E, Sommer M O A,et al.CRMAGE: CRISPR optimized MAGE recombineering. Scientific Reports, 2016, 6: 19452.
[63] D’oelsnitz S, Ellington A.Continuous directed evolution for strain and protein engineering. Current Opinion in Biotechnology, 2018, 53: 158-163.
[64] Esvelt K M, Carlson J C, Liu D R.A system for the continuous directed evolution of biomolecules. Nature, 2011, 472(7344): 499-503.
[65] Ravikumar A, Arrieta A, Liu C C.An orthogonal DNA replication system in yeast. Nature Chemical Biology, 2014, 10(3): 175-177.
[66] Hess G T, Fresard L, Han K, et al.Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016, 13(12): 1036-1042.
[67] Crook N, Abatemarco J, Sun J, et al.In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016, 7: 13051.
[68] Heckmann D, Lloyd C J, Mih N, et al.Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nature Communications, 2018, 9(1): 5252.
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[3] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[4] 刘鹏, 林春娇, 杨立荣, 徐刚, 吴坚平. S-2-氯丙酸脱卤酶的定向进化及其应用[J]. 中国生物工程杂志, 2012, 32(05): 66-72.
[5] 荀启静, 林瑛, 邱沛然, 孟清. 定向进化提高微小蛋白质内含子Ter DnaE-3 剪接活性的研究[J]. 中国生物工程杂志, 2012, 32(05): 79-84.
[6] 吴秀秀, 吕晓慧, 胡亚冬, 谢春芳, 刘大岭, 姚冬生. 耐高温耐酸稳定假密环菌(Armillariella tabescens) MAN47β-甘露聚糖酶体外分子定向进化[J]. 中国生物工程杂志, 2012, 32(03): 83-90.
[7] 郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.
[8] 张秀艳,何国庆. 蛋白质突变体基因库构建方法的研究进展[J]. 中国生物工程杂志, 2006, 26(10): 50-56.
[9] 谢晚彬, 谢和芳. 蛋白质定向进化的研究技术及应用[J]. 中国生物工程杂志, 2005, 25(S1): 16-18.
[10] 黄智华, 李敏. 蜘蛛丝的分子结构与力学性能研究[J]. 中国生物工程杂志, 2003, 23(7): 84-88.
[11] 贾向东, 陈德富, 陈喜文, 郭少影. 几种定向进化技术的比较及文库构建策略[J]. 中国生物工程杂志, 2003, 23(12): 68-72.
[12] 冷欣夫, 邱星辉, 伍一军. 细胞色素P450酶系循环催化的新途径[J]. 中国生物工程杂志, 2002, 22(5): 49-52.
[13] 肖志壮, 刘梦海, 汪天虹, 曲音波. 蛋白质定向进化的研究进展[J]. 中国生物工程杂志, 2001, 21(6): 31-33.
[14] 丁岳明, 陈宜峰, 朱洪生. 猪基因定位研究进展[J]. 中国生物工程杂志, 1994, 14(5): 12-16.
[15] . 靛兰植物染料遗传工程合成[J]. 中国生物工程杂志, 1992, 12(5): 51-51.