Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 13-20    DOI: 10.13523/j.cb.20190303
研究报告     
干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *
汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶()
重庆医科大学检验医学院 临床检验诊断学教育部重点实验室 重庆市重点实验室 重庆 400016
Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism
Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG()
College of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education,Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1170 KB)   HTML
摘要:

目的: 探讨糖酵解酶丙酮酸激酶M2型(PKM2)对人白血病细胞体外增殖和凋亡的影响及潜在机制。方法: 将靶向PKM2的慢病毒载体转染人K562细胞株(shPKM2组),同时设立空载体转染组为对照(Vector组)。采用qRT-PCR和Western blot技术分别检测Vector组和shPKM2组PKM2 mRNA和蛋白的表达以及自噬标志物的变化;CCK-8实验检测细胞体外增殖能力;流式细胞术检测细胞周期和凋亡情况;Western blot检测凋亡相关蛋白Bax、Bcl-2表达水平。结果: 在稳定干扰PKM2后,PKM2的mRNA(t=11.58,P=0.000 3)和蛋白水平(t=11.88,P=0.000 3)均明显降低。与Vector组比较,shPKM2组细胞体外增殖能力显著降低(F=118.87,P<0.000 1)。同时,干扰PKM2可使K562细胞周期阻滞在G1期,细胞凋亡率显著增加(t=37.23,P<0.000 1);使促凋亡蛋白Bax表达增加(t=15.36,P=0.000 1)、抗凋亡蛋白Bcl-2表达降低(t=9.965,P=0.000 6)。此外,干扰PKM2可减弱K562细胞自噬水平,表现为LC3II降低(tLC3II=10.32,PLC3II=0.000 5),而p62水平增加(tp62=14.59,Pp62=0.000 1)。还发现自噬诱导剂能逆转shPKM2引起的白血病细胞体外增殖能力减弱(F=96.32,P<0.000 1)。结论: 以上结果表明干扰PKM2可抑制人白血病K562细胞的体外增殖并促进其凋亡,其机制可能与PKM2介导的自噬活性降低有关,提示PKM2可能作为白血病诊疗的一个潜在靶点。

关键词: PKM2白血病增殖凋亡自噬    
Abstract:

Objective: Effects of PKM2 knockdown on proliferation and apoptosis of human leukemia cells and its potential mechanism were investigated in our experiment. Methods: Lentivirus-based short hairpin RNA (shRNA) vector targeting PKM2 was transfected into K562 cells (shPKM2 group), and the vector-treated cells were named as the Vector group. mRNA and protein levels of PKM2 in K562 cells were determined by qRT-PCR and Western blot techniques, respectively. Cell proliferation activity was evaluated by CCK-8 assay in vitro. Cell cycle and apoptosis rate were analyzed by flow cytometry, the expression levels of apoptosis-related proteins Bax and Bcl-2 were measured by Western blot and the autophagy activity was measured by qRT-PCR and Western blot, respectively. Results: mRNA (t=11.58, P=0.000 3) and protein (t=11.88, P=0.000 3) levels of PKM2 were significantly decreased after PKM2 knockdown in K562 cells. In comparison to the Vector group, cell proliferation was inhibited by PKM2 deleption in shPKM2 group (F=118.87, P<0.000 1). Furthermore, G1-phase cell cycle was arrested, and the cell apoptosis rate was increased after PKM2 knockdown (t=37.23, P<0.000 1). Meanwhile, upregulated pro-apoptotic Bax protein levels (t=15.3, P=0.000 1) and downregulated anti-apoptotic Bcl-2 protein levels (t=9.965, P=0.000 6) were observed in shPKM2 group compared with the Vector group. In addition, decreased expression of PKM2 significantly downregulated LC3II levels (tLC3II=10.32, PLC3II=0.000 5) and elevated p62 levels (tp62=14.59, Pp62=0.000 1) in K562 cells. Finally, autophagy activator rapamycin rescued the inhibitory cell proliferation due to PKM2 knockdown (F=96.32, P<0.000 1). Conclusion: Above-mentioned results indicate that PKM2 knockdown can inhibit cell proliferation and promote cell apoptosis, at least partially through the cell autophagy, and PKM2 might be a potential target in the treatment of leukemia.

Key words: PKM2    Leukemia    Proliferation    Apoptosis    Autophagy
收稿日期: 2018-10-21 出版日期: 2019-04-12
ZTFLH:  Q291  
基金资助: * 国家自然科学基金面上项目(81873973);重庆市渝中区科技计划(20170411);重庆市研究生科研创新资助项目(CYS17155)
通讯作者: 张伶     E-mail: lingzhang@cqmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪路
杨丽媛
唐雨婷
陶瑶
雷力
敬一佩
蒋雪坷
张伶

引用本文:

汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.

Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism. China Biotechnology, 2019, 39(3): 13-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190303        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/13

基因Genes 序列Sequences(5' - 3')
PKM2 F: 5'-GCCTGCTGTGTCGGAGAAG-3'
R: 5'-CAGATGCCTTGCGGATGAATG-3'
LC3 F: 5'-GACCGCTGTAAGGAGGTGC-3'
R: 5'-CTTGACCAACTCGCTCATGTTA-3'
p62 F: 5'-GGGGACTTGGTTGCCTTTT-3'
R: 5'-CAGCCATCGCAGATCACATT-3'
β-actin F: 5'-TAGTTGCGTTACACCCTTTCTTG-3'
R: 5'-TGCTGTCACCTTCACCGTTC-3'
表1  定量PCR所用引物序列
图1  慢病毒干扰PKM2对K562细胞PKM2 mRNA和蛋白表达水平的影响
图2  干扰PKM2对K562细胞体外增殖的影响
图3  流式细胞术检测干扰PKM2对K562细胞周期的影响
Group G1(%) G2(%) S(%)
Vector 28.14±1.65 3.31±0.30 68.56±1.95
shPKM2 44.59±0.15* 17.15±0.76* 38.26±0.62*
表2  干扰PKM2对K562细胞周期分布的影响
图4  干扰PKM2对K562细胞凋亡的影响
图5  干扰PKM2对K562细胞自噬活性的影响
图6  干扰PKM2联合自噬诱导剂对K562细胞增殖的影响
[1] Pfrepper C, Klink A, Behre G , et al. Risk factors for outcome in refractory acute myeloid leukemia patients treated with a combination of fludarabine, cytarabine, and amsacrine followed by a reduced-intensity conditioning and allogeneic stem cell transplantation. J Cancer Res Clin Oncol, 2016,142(1):317-324.
doi: 10.1007/s00432-015-2050-y pmid: 26424692
[2] Jang M, Kim S S, Lee J . Cancer cell metabolism: Implications for therapeutic targets. Exp Mol Med, 2013,45:e45.
doi: 10.1038/emm.2013.85 pmid: 24091747
[3] Dayton T L, Jacks T , Vander Heiden M G . PKM2, cancer metabolism, and the road ahead. EMBO Rep, 2016,17(12):1721-1730.
doi: 10.15252/embr.201643300 pmid: 27856534
[4] Yang W, Lu Z . Pyruvate kinase M2 at a glance. J Cell Sci, 2015,128(9):1655-1660.
doi: 10.1242/jcs.166629 pmid: 25770102
[5] Orsini M, Morceau F, Dicato M , et al. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol, 2018,152:347-361.
doi: 10.1016/j.bcp.2018.04.007 pmid: 29656115
[6] Takahashi H, Inoue J, Sakaguchi K , et al. Autophagy is required for cell survival under L-asparaginase-induced metabolic stress in acute lymphoblastic leukemia cells. Oncogene, 2017,36(30):4267-4276.
doi: 10.1038/onc.2017.59
[7] Cheng T Y, Yang Y C, Wang H P , et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene, 2018,37(13):1730-1742.
doi: 10.1038/s41388-017-0086-y
[8] Wang Y H, Israelsen W J, Lee D , et al. Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell, 2014,158(6):1309-1323.
doi: 10.1016/j.cell.2014.07.048 pmid: 25215489
[9] Panchabhai S, Schlam I, Sebastian S , et al. PKM2 and other key regulators of Warburg effect positively correlate with CD147 (EMMPRIN) gene expression and predict survival in multiple myeloma. Leukemia, 2017,31(4):991-994.
doi: 10.1038/leu.2016.389 pmid: 28025580
[10] Lin Y, Meng F, Lu Z , et al. Knockdown of PKM2 suppresses tumor progression in human cervical cancer by modulating epithelial-mesenchymal transition via Wnt/beta-catenin signaling. Cancer Manag Res, 2018,10:4191-4202.
doi: 10.2147/CMAR
[11] Goldberg M S, Sharp P A . Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med, 2012,209(2):217-224.
doi: 10.1084/jem.20111487 pmid: 22271574
[12] Zheng B, Liu F, Zeng L , et al. Overexpression of pyruvate kinase type M2 (PKM2) promotes ovarian cancer cell growth and survival via regulation of cell cycle progression related with upregulated CCND1 and downregulated CDKN1A expression. Med Sci Monit, 2018,24:3103-3112.
doi: 10.12659/MSM.907490 pmid: 29752805
[13] Tooze S A, Dikic I . Autophagy captures the Nobel Prize. Cell, 2016,167(6):1433-1435.
doi: 10.1016/j.cell.2016.11.023 pmid: 27912049
[14] Polak R , Bierings M B, van der Leije C S , et al. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1 driven B-cell precursor acute lymphoblastic leukemia. Haematologica, 2018, DOI: 10.3324/haematol.2018.193631.
doi: 10.3324/haematol.2018.193631
[15] Piya S, Andreeff M, Borthakur G . Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Autophagy, 2017,13(1):214-215.
doi: 10.1080/15548627.2016.1245263 pmid: 27797294
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 李世荣,陈阳琴,张春盼,齐文杰. RS4651通过上调SMAD7抑制小鼠肝细胞AML12的EMT作用[J]. 中国生物工程杂志, 2021, 41(7): 1-9.
[3] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[4] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[5] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[6] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[7] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[8] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[9] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[10] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[11] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[12] 郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.
[13] 唐敏,万群,孙恃雷,胡静,孙子久,方玉婷,张彦. Hsa-miR-5195-3p对人宫颈癌细胞SiHa增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2020, 40(4): 17-24.
[14] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[15] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.