Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (3): 105-114    DOI: 10.13523/j.cb.20180314
综述     
抗坏血酸的代谢和调控——以模式植物和园艺植物为例 *
李京霞1*,夏惠1,2*(),吕秀兰1,2,王进1,2,梁东1,2**
1 四川农业大学园艺学院 成都 611130
2 四川农业大学果蔬研究所 成都 611130
The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant
Jing-xia LI1*,Hui XIA1,2*(),Xiu-lan LV1,2,Jin WANG1,2,Dong LIANG1,2**
1 College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
2 Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
 全文: PDF(751 KB)   HTML
摘要:

抗坏血酸在植物的生长发育和抗逆过程中具有重要作用。主要概述了抗坏血酸在模式植物和园艺植物中的代谢途径,并且从转录水平、翻译水平和遗传转化等方面综述了多个不同基因对抗坏血酸水平的调控机制。以期为深入研究抗坏血酸在植物(尤其是园艺植物)中的代谢调控机制提供参考。

关键词: 抗坏血酸代谢调控模式植物园艺植物    
Abstract:

Ascorbic acid (AsA) plays important roles in the growing development and stress resistance in plant. The pathways of AsA metabolism is revgiewed, and regulation mechanism of various genes on AsA metabolism by gene transcription, translation and transformation in model and horticultural plant are focused on. The reviews may provide insight for future study on regulation mechanism of AsA metabolism in plants, focusing specifically on the horticultural plant.

Key words: Ascorbic acid    Metabolism    Regulation    Model plant    Horticultural plant
收稿日期: 2017-09-18 出版日期: 2018-04-04
ZTFLH:  S601  
基金资助: 四川省国际猕猴桃生物技术育种平台(2016NZ0105);四川省科技厅应用基础研究(2017JY0169)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李京霞
夏惠
吕秀兰
王进
梁东

引用本文:

李京霞,夏惠,吕秀兰,王进,梁东. 抗坏血酸的代谢和调控——以模式植物和园艺植物为例 *[J]. 中国生物工程杂志, 2018, 38(3): 105-114.

Jing-xia LI,Hui XIA,Xiu-lan LV,Jin WANG,Dong LIANG. The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant. China Biotechnology, 2018, 38(3): 105-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180314        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I3/105

图1  植物AsA生物合成途径
图2  植物AsA循环再生途径
图3  植物细胞中AsA的运输
图4  植物AsA的降解途径
Gene transformed Gene donor Species transformed References
GMP 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [59]
GMP 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GMP 番茄 Solanum lycopersicum 番茄 Solanum lycopersicum [64]
GME 刺梨 Rosa roxburghii 拟南芥 Arabidopsis thaliana [65]
GME 苜蓿 Medicago sativa 拟南芥 Arabidopsis thaliana [66]
GME 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GME 水稻 Oryza sativa 水稻 Oryza sativa [67]
GGP 中华猕猴桃 Actinidia chinensis 番茄 Solanum lycopersicum [10]
GGP 马铃薯 Solanum tuberosum 马铃薯 Solanum tuberosum [10]
GGP 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GGP 水稻 Oryza sativa 水稻 Oryza sativa [67]
GGP 中华猕猴桃 Actinidia chinensis 草莓 Fragaria ananassa [10]
GPP 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GalDH 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GalLDH 生菜 Lactuca sativa 生菜 Lactuca sativa [68]
GalLDH 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GalLDH 刺梨 Rosa roxburghii 烟草 Nicotiana tabacum [69]
GMP+GME Prunus persica 烟草 Nicotiana tabacum [70]
GMP+GME Prunus persica 烟草 Nicotiana tabacum [70]
GGP+GPP 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GGP+GalLDH 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [63]
GalUR 草莓 Fragaria ananassa 番茄 Solanum lycopersicum [71]
GalUR 草莓 Fragaria ananassa 番茄 Solanum lycopersicum [72]
GalUR 草莓 Fragaria ananassa 番茄 Solanum lycopersicum [73]
MIOX 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [74]
MIOX 番茄 Solanum lycopersicum 番茄 Solanum lycopersicum [64]
ALO 酵母 Yeast 柱花草Stylosanthes guianensis [75]
ALO 小鼠 Rat 拟南芥 Arabidopsis thaliana [74]
MDHAR 金虎 Malpighia coccigera 烟草 Nicotiana tabacum [76]
DHAR 马铃薯 Solanum tuberosum 番茄 Solanum lycopersicum [77]
DHAR 新疆梨 Pyrus sinkiangensis 番茄 Solanum lycopersicum [78]
DHAR 刺梨 Rosa roxburghii 拟南芥 Arabidopsis thaliana [65]
DHAR 中华猕猴桃 Actinidia chinensis 拟南芥 Arabidopsis thaliana [79]
ERF98 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [61]
HZ24 番茄 Solanum lycopersicum 番茄 Solanum lycopersicum [62]
KONJAC 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [59]
CSN5B 拟南芥 Arabidopsis thaliana 拟南芥 Arabidopsis thaliana [54]
Dof22 番茄 Solanum lycopersicum 番茄 Solanum lycopersicum [72]
表1  近年来一些通过转基因技术调控植物体内AsA含量的研究
[1] Cruz-Rus E, Amaya I , Sanchez-Sevilla J F, et al. Regulation of L-ascorbic acid content in strawberry fruits. J Exp Bot, 2011,62(12):4191-4201.
doi: 10.1093/jxb/err122 pmid: 3153677
[2] Bartoti C G, Guiamet J J, Kiddle G , et al. The relationship between L-galactono-1,4-lactone dehydrogenase (GalLDH) and ascorbate content in leaves under optimal and stress conditions. Plant Cell Environ, 2005,28:1073-1081.
doi: 10.1111/j.1365-3040.2005.01338.x
[3] Wang Z, Xiao Y, Chen W , et al. Increased vitamin c content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol, 2010,52(4):400-409.
doi: 10.1111/j.1744-7909.2010.00921.x pmid: 20377702
[4] Yabuta Y, Mieda T, Rapolu M , et al. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Expt Bot, 2007,58(10):2661-2671.
doi: 10.1016/j.bmcl.2009.10.110 pmid: 17586607
[5] Shalata A, Mittova V, Volokita M , et al. Reaponse of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plant, 2001,112(4):487-494.
doi: 10.1034/j.1399-3054.2001.1120405.x pmid: 11473708
[6] Sanmartin M, Drogoudi P D, Lyons T , et al. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta, 2003,216(6):918-928.
doi: 10.1007/s00425-002-0944-9 pmid: 12687359
[7] Li Y, Schellhorn H E . Can ageing-related degenerative diseases be ameliorated through administration of vitamin C at pharmacological levels. Med Hypotheses, 2007,68(6):1315-1327.
doi: 10.1016/j.mehy.2006.10.035 pmid: 17141419
[8] Fritz H, Flower G, Weeks L , et al. Intravenous vitamin C and cancer: a systematic review. Integr Cancer Ther, 2014,13(4):280-300.
doi: 10.1177/1534735414534463
[9] Gest N, Gautier H, Stevens R . Ascorbate as seen through plant evolution: the rise of a successful molecule. J Exp Bot, 2013,64(1):33-53.
doi: 10.1093/jxb/ers297 pmid: 23109712
[10] Bulley S, Wright M, Rommens C , et al. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J, 2012,10(4):390-397.
doi: 10.1111/j.1467-7652.2011.00668.x pmid: 22129455
[11] Badejo A A, Eltelib H A, Fukunaga K , et al. Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol, 2009,50(2):423-428.
doi: 10.1093/pcp/pcn206 pmid: 19122187
[12] Mellidou I, Chagné D, Laing W A , et al. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol, 2012,160(3):1613-1629.
doi: 10.1104/pp.112.203786 pmid: 23001142
[13] Stevens R, Buret M, Duffé P , et al. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007,143(4):1943-1953.
doi: 10.1104/pp.106.091413 pmid: 17277090
[14] Gautier H, Massot C, Stevens R , et al. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann Bot-London, 2009,103(3), 495-504.
doi: 10.1093/aob/mcn233 pmid: 2707328
[15] Guo Z F, Tan H Q, Zhu Z H , et al. Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem, 2005,43(10-11):955-962.
doi: 10.1016/j.plaphy.2005.08.007 pmid: 16310370
[16] Davey M W, Montagu M V, Inzé D , et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric, 2000,80(7):825-860.
doi: 10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-6
[17] Wheeler G L, Jones M A, Smirnoff N . The biosynthetic pathway of vitamin C in higher plants. Nature, 1998,393(6683):365-369.
doi: 10.1038/30728 pmid: 9620799
[18] Agius F, González-Lamothe R, Caballero J L , et al. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol, 2003,21(2):177-181.
doi: 10.1038/nbt777 pmid: 12524550
[19] Di Matteo A, Sacco A, Anacleria M , et al. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol, 2010,10(1):163.
doi: 10.1186/1471-2229-10-163 pmid: 3095297
[21] Lorence A, Chevone B I, Mendes P , et al. Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol, 2004,134(3):1200-1205.
doi: 10.1104/pp.103.033936
[20] Wolucka B A, van Montagu M . GDP-mannose-3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem, 2003,278(48):47483-47490.
doi: 10.1074/jbc.M309135200 pmid: 12954627
[22] Wheeler G, Ishikawa T, Pornsaksit V , et al. Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. ELife, 2015,4:e06369.
doi: 10.7554/eLife.06369 pmid: 4396506
[23] Foyer C H, Noctor G . Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plantarum, 2003,119(3):355-364.
doi: 10.1034/j.1399-3054.2003.00223.x
[24] Siendones E , González-Reyes J A, Santos-Oca?a C, et al. Biosynthesis of ascorbic acid in kidney bean. L-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol, 1999,120(3):907-912.
doi: 10.1016/j.matchar.2009.01.020 pmid: 10398727
[25] Horemans N, Foyer C H, Asard H . Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci, 2000,5(6):263-267.
doi: 10.1016/S1360-1385(00)01649-6 pmid: 10838618409300143002282013
[26] Szarka A, Horemans N, Banhegyi G , et al. Facilitated glucose and dehydroascorbate transport in plant mitochondria. Archives of Biochemi Biophy, 2004,428(1):73-80.
doi: 10.1016/j.abb.2004.05.011 pmid: 15234271
[27] Horemans N, Raeymaekers T, Van Beek K , et al. Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot, 2007,58(15-16):4307-4317.
doi: 10.1093/jxb/erm291 pmid: 18182433
[28] Horemans N, Szarka A, De Bock M , et al. Dehydroascorbate and glucose are taken up into Arabidopsis thaliana cell cultures by two distinct mechanisms. FEBS Let, 2008,582(18):2714-2718.
doi: 10.1016/j.febslet.2008.07.001 pmid: 2751764
[29] Ishikawa T, Shigeoka S . Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photo synthesizing organisms. Biosci Biotech Biochemi, 2008,72(5):1143-1154.
doi: 10.1271/bbb.80062 pmid: 18460785
[30] Preger V, Scagliarini S, Pupillo P. Trost Paolo . Identification of an ascorbate-dependent cytochrome b of the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family. Planta, 2005,220(3):365-375.
doi: 10.1007/s00425-004-1360-0
[31] Maurino V G, Grube E, Zielinski J , et al. Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol, 2006,47(10):1381-1393.
doi: 10.1093/pcp/pcl011 pmid: 16982705
[32] Hancock R D , McRae D, Haupt S, et al. Synthesis of L-ascorbic acid in the phloem. BMC Plant Biol, 2003,3(1):7.
doi: 10.1186/1471-2229-3-7
[33] Hancock R D, Viola R . Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci, 2005,24(3):167-188.
doi: 10.1080/07352680591002165
[34] Li M, Ma F, Liang D , et al. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One, 2010,5(12):e14281.
doi: 10.1371/journal.pone.0014281 pmid: 3000333
[35] Franceschi V R, Tarlyn N . L-ascorbic acid is accumulated in phloem and transported to sink tissues in plants. Plant Physiol, 2002,130(2):649~ 656.
doi: 10.1104/pp.007062
[36] DeBolt S, Cook D R, Ford C M . L-Tartaric acid synthesis from vitamin C in higher plants. PNAS, 2006,103(14):5608.
doi: 10.1073/pnas.0510864103 pmid: 16567629
[37] DeBolt S, Hardie J, Tyerman S , et al. Composition and synthesis of raphide crystals and druse crystals in berries of Vitis vinifera L. cv. Cabernet Sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies. Aust J Grape Wine Res, 2004,10(2):134-142.
doi: 10.1111/j.1755-0238.2004.tb00016.x
[38] Green M A, Fry S C . Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature, 2005,433(7021):83-87.
doi: 10.1038/nature03172 pmid: 15608627
[39] Parsons H T, Yasmin T, Fry S C . Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J, 2011,440(3):375-385.
doi: 10.1042/BJ20110939 pmid: 21846329
[40] Parsons H T, Fry S C . Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions. Phytochemistry, 2012,75(5):41-49.
doi: 10.1016/j.phytochem.2011.12.005 pmid: 22226246
[41] Wagner G, Loewus F . The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol, 1973,52(6):651-654.
doi: 10.1104/pp.52.6.651 pmid: 16658623
[42] Truffault V, Fry S C, Stevens R G , et al. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. Plant J, 2017,89(5):996-1008.
doi: 10.1111/tpj.13439 pmid: 27888536
[43] Bulley S M, Rassam M, Hoser D , et al. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot, 2009,60(3):765-778.
doi: 10.1093/jxb/ern327 pmid: 19129165
[44] Li J, Li M, Liang D , et al. Comparison of expression pattern, genomic structure, and promoter analysis of the gene encoding GDP-L-galactose phosphorylase from two Actinidia species. Sci Hortic, 2014,169(1):206-213.
doi: 10.1016/j.scienta.2014.02.024
[45] Yoshimura K, Nakane T, Kume S , et al. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Biosci Biotechnol Biochem, 2014,78(1):60-66.
doi: 10.1080/09168451.2014.877831 pmid: 25036484
[46] Zhang C M, Huang J, Li X G . Transcriptomic analysis reveals the metabolic mechanism of L-ascorbic acid in Ziziphus jujube Mill. Front. PlantSci, 2016,7:46212.
doi: 10.3389/fpls.2016.00122 pmid: 26913041
[47] Li J, Liang D, Li M, Ma F . Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta, 2013,238(3):535-547.
doi: 10.1007/s00425-013-1915-z
[48] Gao Y, Badejo A A, Shibata H , et al. Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Biosci Biotechnol Biochem, 2011,75(9):1783-1788.
doi: 10.1271/bbb.110320
[49] Laing W, Norling C, Brewster D , et al. Ascorbate concentration in Arabidopsis thaliana and expression of ascorbate related genes using RNAseq in response to light and the diurnal cycle. BioRxiv, 2017 1-38.doi: .
[50] Dowdle J, Ishikawa T, Gatzek S , et al. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J, 2007,52(4):673-689.
doi: 10.1111/j.1365-313X.2007.03266.x pmid: 17877701
[51] Bulley S, Laing W . The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology, 2016,33:15-22.
doi: 10.1016/j.pbi.2016.04.010 pmid: 27179323
[52] Wolucka B A, Goossens A, Inze D . Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany, 2005,56(419):2527-2538.
doi: 10.1093/jxb/eri246 pmid: 16061506
[53] Laing W A, Martlnez-Sànchez M, Wright M A , et al. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell, 2015,27(3):772-786.
doi: 10.1105/tpc.114.133777 pmid: 25724639
[54] Wang J, Yu Y, Zhang Z , et al. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell, 2013,25(2):625-636.
doi: 10.1105/tpc.112.106880 pmid: 23424245
[55] Moon J, Parry G, Estelle M . The ubiquitin-proteasome pathway and plant development. Plant Cell, 2004,16(12):3181-3195.
doi: 10.1105/tpc.104.161220
[56] Ni W, Xie D, Hobbie L , et al. Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol, 2004,134(4):1574-1585.
doi: 10.1104/pp.103.031971
[57] Zhang W, Lorence A, Gruszewski H A , et al. AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiol, 2009,150(2):942-950.
doi: 10.1104/pp.109.138453
[58] Conklin P L , DePaolo D, Wintle B, et al. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase: protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot, 2013,64(10):2793-2804.
doi: 10.1093/jxb/ert140 pmid: 23749562
[59] Sawake S, Tajima N, Mortimer J C , et al. KONJAC1 and 2 are key factors for GDP-mannose generation and affect L-ascorbic acid and glucomannan biosynthesis in Arabidopsis. Plant Cell, 2015,27(12):3397-3409.
doi: 10.1105/tpc.15.00379 pmid: 26672069
[60] Cho K-M , Nguyen H T K, Kim S Y, et al. CML10, a variant of calmodulin, modulates ascorbic acid synthesis. New Phytol, 2015,209(2):664-678.
[61] Zhang Z, Wang J, Zhang R , et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J, 2012,71(2):273-287.
doi: 10.1111/j.1365-313X.2012.04996.x pmid: 22417285
[62] Hu T, Ye J, Tao P , et al. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J, 2016,85(1):16-29.
doi: 10.1111/tpj.13085
[63] Zhou Y, Tao Q C, Wang Z N , et al. Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol Plant, 2012,56(3):451-457.
doi: 10.1007/s10535-012-0119-x
[64] Cronje C, George G M, Fernie A R , et al. Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta, 2012,235(3):553-564.
doi: 10.1007/s00425-011-1525-6 pmid: 21979413
[65] Huang M, Xu Q, Deng X X . L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt). J Plant Physiol, 2014,171(14):1205-1216.
doi: 10.1016/j.jplph.2014.03.010 pmid: 25019249
[66] Ma L, Wang Y, Liu W , et al. Overexpression of an alfalfa GDP-mannose 3',5'-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett, 2014,36(11):2331-2341.
doi: 10.1007/s10529-014-1598-y pmid: 24975731
[67] Zhang G Y, Liu R R, Zhang C Q , et al. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS One, 2015,10(5):e0125870.
doi: 10.1371/journal.pone.0125870 pmid: 4418601
[68] Linda M, Fambrini M, Basile A , et al. Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tiss Org, 2015,123(1):109-120.
doi: 10.1007/s11240-015-0819-y
[69] Liu W, An H M, Yang M . Overexpression of Rosa roxburghii L-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant, 2013,35(5):1617-1624.
doi: 10.1007/s11738-012-1204-7
[70] Imai T, Ban Y, Yamamoto T , et al. Ectopic overexpression of peach GDP-D-mannose pyrophosphorylase and GDP-D-mannose-3',5'-epimerase in transgenic tobacco. Plant Cell Tiss Org, 2012,111(1):1-13.
doi: 10.1007/s11240-012-0165-2
[71] Lim M Y, Jeong B R, Jung M , et al. Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep, 2016,10(2):105-116.
doi: 10.1007/s11816-016-0392-9
[72] Cai X, Zhang C, Shu W , et al. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun, 2016,474(4):736-741.
doi: 10.1016/j.bbrc.2016.04.148 pmid: 27157141
[73] Amaya I, Osorio S, Martinez-Ferri E , et al. Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J, 2015,10(3):490-500.
doi: 10.1002/biot.201400279 pmid: 25143316
[74] Lisko K A, Torres R, Harris R S , et al. Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant, 2013,49(6):643-655.
doi: 10.1007/s11627-013-9568-y pmid: 4354779
[75] Bao G, Zhuo C, Qian C , et al. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J, 2016,14(1):206-214.
doi: 10.1111/pbi.12374 pmid: 25865630
[76] Eltelib H A, Fujikawa Y, Esaka M . Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. South African Journal of Botany, 2012,78:295-301.
doi: 10.1016/j.sajb.2011.08.005
[77] Li Q Z, Li Y S, Li C H , et al. Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen & salt stresses in tomato. Czech J Genet Plant Breed, 2012,48(2):74-86.
doi: 10.5586/asbp.2012.008
[78] Qin A, Huang X, Zhang H , et al. Overexpression of PbDHAR2 from Pyrus sinkiangensis in transgenic tomato confers enhanced tolerance to salt and chilling stresses. HortScience, 2015,50(6):789-796.
[79] Liu F, Guo X, Yao Y , et al. Cloning and function characterization of two dehydroascorbate reductases from kiwifruit (Actinidia chinensis L.). Plant Mol Biol Rep, 2016,34(4):815-826.
doi: 10.1007/s11105-015-0965-8
[80] Cai X, Zhang C, Ye J , et al. Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul, 2015,76(2):187-197.
doi: 10.1007/s10725-014-9988-7
[81] Lisko K A, Aboobucker S I, Torres R , et al. Engineering elevated vitamin C in plants to improve their nutritional content, growth, and tolerance to abiotic stress. Springer International Publishing, 2014,44:109-128.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[5] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[6] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[7] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[8] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[9] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[10] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[11] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[12] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[13] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[14] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[15] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.