Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (9): 75-80    DOI: 10.13523/j.cb.20160909
综述     
植物表皮蜡质生物合成及调控
杨贤鹏1,2, 王宙雅1,2, 高翔1,2, 李荣俊, 吕世友1
1 中国科学院植物种质创新与特色农业重点实验室 武汉植物园 武汉 430074;
2 中国科学院大学 北京 100049
Research Progress in Plant Cuticular Wax Biosynthesize and Regulation
YANG Xian-peng1,2, WANG Zhou-ya1,2, GAO Xiang1,2, LI Rong-jun, LÜ Shi-you1
1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(372 KB)   HTML
摘要:

植物表皮蜡质,是覆盖在陆地植物地上部分表面的一层疏水性脂类物质,是植物应对外界环境变化的第一道屏障,在抑制植物水分非气孔散失及保护植物免受病虫害入侵、紫外线辐射等方面起着重要作用。综述了近年来表皮蜡质在生物合成及调控等方面的研究进展,并对研究中存在的问题及研究前景进行了展望。

关键词: 调控表皮蜡质生物合成    
Abstract:

The epicuticular wax coating the aerial surface of land plants is a hydrophobic lipid component, which forms a barrier against environmental stresses. It plays key roles in restricting non-stomatal water loss, protecting plants against the attack of pathogen and insect, and ultraviolet radiation. Recent progress on the biosynthesis pathway and regulation of epicuticular wax was reviewed. The questions and future application were discussed.

Key words: Epicuticular wax    Biosynthesis    Regulation
收稿日期: 2016-03-17 出版日期: 2016-09-25
ZTFLH:  Q946.8  
基金资助:

国家自然科学基金资助项目(31370338,31570186)

通讯作者: 吕世友     E-mail: shiyoulu@wbgcas.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨贤鹏, 王宙雅, 高翔, 李荣俊, 吕世友. 植物表皮蜡质生物合成及调控[J]. 中国生物工程杂志, 2016, 36(9): 75-80.

YANG Xian-peng, WANG Zhou-ya, GAO Xiang, LI Rong-jun, LÜ Shi-you. Research Progress in Plant Cuticular Wax Biosynthesize and Regulation. China Biotechnology, 2016, 36(9): 75-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160909        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I9/75

[1] Jetter R, Kunst L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. The Plant Journal, 2008, 54(4):670-683.
[2] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 2009, 151(4):1918-1929.
[3] Aharoni A, Dixit S, Jetter R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16(9):2463-2480.
[4] Seo P J, Lee S B, Suh M C, et al. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23(3):1138-1152.
[5] Liu W, Zhou X, Li G, et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathogens, 2011, 7(1):e1001261.
[6] Uppalapati S R, Ishiga Y, Doraiswamy V, et al. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell, 2012, 24(1):353-370.
[7] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42(1):51-80.
[8] Li N, Gügel I L, Giavalisco P, et al. FAX1, A novel membrane protein mediating plastid fatty acid export. PLoS Biology, 2015, 13(2):e1002053-e1002053.
[9] Kunst L, Samuels L. Plant cuticles shine:advances in wax biosynthesis and export. Current Opinion in Plant Biology, 2009, 12(6):721-727.
[10] Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism. The Arabidopsis book/American Society of Plant Biologists, 2013, 11(8):e0133.
[11] Millar A A, Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. The Plant Journal, 1997, 12(1):121-131.
[12] Millar A A, Clemens S, Zachgo S, et al. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell, 1999, 11(5):825-838.
[13] Todd J, Post-Beittenmiller D, Jaworski J G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant Journal, 1999, 17(2):119-130.
[14] Fiebig A, Mayfield J A, Miley N L, et al. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell, 2000, 12(10):2001-2008.
[15] Pruitt R E, Vielle-Calzada J P, Ploense S E, et al. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(3):1311-1316.
[16] Franke R, Hofer R, Briesen I, et al. The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant Journal, 2009, 57(1):80-95.
[17] Kim J, Jung J H, Lee S B, et al. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiology, 2013, 162(2):567-580.
[18] Quist T M, Sokolchik I, Shi H, et al. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. Molecular Plant, 2009, 2(1):138-151.
[19] Bach L, Faure J D. Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies, 2010, 333(4):361-370.
[20] Haslam T M, Kunst L. Extending the story of very-long-chain fatty acid elongation. Plant Science, 2013, 210C(9):93-107.
[21] Beaudoin F, Wu X, Li F, et al. Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol, 2009, 150(3):1174-1191.
[22] Bach L, Michaelson L V, Haslam R, et al. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA, 2008, 105(38):14727-14731.
[23] Zheng H, Rowland O, Kunst L. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005, 17(5):1467-1481.
[24] Haslam T M, Mañas-Fernández A, Zhao L, et al. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiology, 2012, 160(3):1164-1174.
[25] Pascal S, Bernard A, Sorel M, et al. The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. The Plant Journal, 2013, 73(5):733-746.
[26] Rowland O, Zheng H, Hepworth S R, et al. CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiology, 2006, 142(3):866-877.
[27] Li F, Wu X, Lam P, et al. Identification of the wax ester synthase/acyl-coenzyme a:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiology, 2008, 148(1):97-107.
[28] Bourdenx B, Bernard A, Domergue F, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology, 2011, 156(1):29-45.
[29] Bernard A, Domergue F, Pascal S, et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24(7):3106-3118.
[30] Greer S, Wen M, Bird D, et al. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology, 2007, 145(3):653-667.
[31] Wang J Q, Sun L, Xie L, et al. Regulation of cuticle formation during fruit development and ripening in "Newhall" navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Science, 2016, 243:131-144.
[32] Broun P, Poindexter P, Osborne E, et al. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13):4706-4711.
[33] Kannangara R, Branigan C, Liu Y, et al. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19(4):1278-1294.
[34] Lee S B, Suh M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant and Cell Physiology, 2014:pcu142.
[35] Oshima Y, Shikata M, Koyama T, et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell, 2013, 25(5):1609-1624.
[36] Go Y S, Kim H, Kim H J, et al. Arabidopsis cuticular Wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell, 2014, 26(4):1666-1680.
[37] Wu R, Li S, He S, et al. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23(9):3392-3411.
[38] Li S, Wang X, He S, et al. CFLAP1 and CFLAP2 Are Two bHLH transcription factors participating in synergistic regulation of AtCFL1-mediated cuticle development in Arabidopsis. PLoS Genet, 2016, 12(1):e1005744.
[39] Hooker T S, Lam P, Zheng H, et al. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell, 2007, 19(3):904-913.
[40] Lam P, Zhao L, McFarlane H E, et al. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiology, 2012, 159(4):1385-1395.
[41] Lam P, Zhao L, Eveleigh N, et al. The exosome and trans-acting siRNAs regulate cuticular wax biosynthesis during Arabidopsis inflorescence stem development. Plant Physiology, 2015,167(2):323-336.
[42] Lü S, Zhao H, Des Marais D L, et al. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiology, 2012, 159(3):930-944.
[43] Ménard R, Verdier G, Ors M, et al. Histone H2B monoubiquitination is involved in the regulation of cutin and wax composition in Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55(2):455-466.
[44] Jetter R, Kunst L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J, 2008, 54(4):670-683.

[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[6] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[7] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[8] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[9] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[10] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[11] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[12] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[13] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[14] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[15] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.