Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 101-105    DOI: 10.13523/j.cb.20161014
综述     
佐剂在衣原体疫苗中应用的研究进展
符玺宗, 柏琴琴, 陈丽丽
南华大学公共卫生学院卫生检验系 衡阳 421001
Adjuvant Applications in Chlamydial Vaccine
FU Xi-zong, BAI Qin-qin, CHEN Li-li
School of Public Health, University of South China, Hengyang 421001, China
 全文: PDF(381 KB)   HTML
摘要:

衣原体是引起多种人类疾病的专性胞内寄生的革兰阴性菌。接种疫苗是预防和控制衣原体感染的经济有效的途径。目前,衣原体疫苗的研究主要集中在亚单位疫苗、载体疫苗、DNA疫苗等,这些疫苗往往需要免疫佐剂来增强其免疫效果。现就佐剂在衣原体疫苗中应用的研究进展作一综述。

关键词: 衣原体疫苗佐剂    
Abstract:

Chlamydiae are obligate intracellular Gram-negative bacteria that cause widespread diseases in humans. Vaccination is the most economical and effective way to control chlamydial infections. At present, the main kinds of chlamydial vaccine include subunit vaccine, vector vaccine, DNA vaccine, and so on. These vaccines often require adjuvants to enhance the immune effects. The progress of adjuvants in the applications of chlamydial vaccine are discussed.

Key words: Chlamydia    Vaccines    Adjuvants
收稿日期: 2016-04-12 出版日期: 2016-10-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金面上项目(81572011)、湖南省自然科学基金青年项目(2016JJ3103)、湖南省研究生科研创新项目(CX2016B482)资助项目

通讯作者: 陈丽丽,电子信箱:chlili720612@163.com     E-mail: chlili720612@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

符玺宗, 柏琴琴, 陈丽丽. 佐剂在衣原体疫苗中应用的研究进展[J]. 中国生物工程杂志, 2016, 36(10): 101-105.

FU Xi-zong, BAI Qin-qin, CHEN Li-li. Adjuvant Applications in Chlamydial Vaccine. China Biotechnology, 2016, 36(10): 101-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161014        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/101

[1] Sharma M,Machuy N,Böhme L,et al. HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis -infected cells. Cell Microbiol,2011,13(10):1573-1585.
[2] Choroszy-Król I C,Frej-Madrzak M,Jama-Kmiecik A,et al. Characteristics of the Chlamydia trachomatis species-immunopathology and infections. Adv Clin Exp Med,2012,21(6):799-808.
[3] Grayston J T,Belland R J,Byrne G I,et al. Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis,2015,73(1):1-9.
[4] Bachmann N L,Polkinghorne A,Timms P. Chlamydia genomics:providing novel insights into chlamydial biology. Trends Microbiol,2014,22(8):464-472.
[5] Schijns V E,Lavelle E C. Trends in vaccine adjuvants. Expert Rev Vaccines,2011,10(4):539-550.
[6] Helgeby A,Robson N C,Donachie A M,et al. The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol,2006,176(6):3697-3706.
[7] Igietseme J U,Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun,2000,68(12):6798-6806.
[8] Zhang Dong-Ji,Yang X,Shen C,et al. Priming with Chlamydia trachomatis major outer membrane protei (MOMP) DNA followed by MOMP ISCOM boosting enhances protection and is associated with increased immunoglobulin A and Th1 cellular immuneresponses. Infect Immun,2000,68(6):3074-3078.
[9] Zhao J,Bagchi S,Wang C R. Type II natural killer T cells foster the antitumor activity of CpG-oligodeoxynucleotides. Oncoimmunology,2014,3(5):1-2.
[10] Cheng C,Pal S,Bettahi I,et al. Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membraneprotein in a nonhuman primate model. Vaccine,2011,29(18):3456-3464.
[11] Meoni E,Faenzi E,Frigimelica E,et al. CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans. Infect Immun,2009,77(9):4168-4176.
[12] Vasilevsky S,Greub G,Nardelli-Haefliger D,et al. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev,2014,27(2):346-370.
[13] Cong Y,Jupelli M,Guentzel M N,et al. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhancesprotective immunity against genital Chlamydia muridarum infection. Vaccine,2007,25(19):3773-3780.
[14] Aguilar J C,Rodríguez E G. Vaccine adjuvants revisited. Vaccine,2007,25(19):3752-3762.
[15] 周红莉,郭丽,王健伟,等. 粘膜免疫佐剂研究进展. 中国生物工程杂志,2006,26(3):83-88. Zhou H L,Guo L,Wang J W,et al. Progress in mucosal adjuvants. China Biotechnology,2006,26(3):83-88.
[16] 齐蔓莉,王敬,刘原君,等. 白细胞介素2基因佐剂对沙眼衣原体E型DNA疫苗的免疫增效作用. 中华皮肤科杂志,2012,45(5):322-324. Qi M L,Wang J,Liu Y J,et al. Immune enhancing effects of interleukin 2 genetic adjuvant on DNA vaccine against Chlamydia trachomatis serovar E. Chinese Journal of Dermatology,2012,45(5):322-324.
[17] 谢长青,吴移谋,曾焱华,等. 肺炎嗜衣原体MOMP和人IL-2融合基因DNA疫苗的免疫原性研究. 中国人兽共患病学报,2009,25(9):837-841. Xie C Q,Wu Y M,Zeng Y H,et al. Immunogenicity of the DNA vaccine with monogene and fusion gene of the major outer membrane protein in Chlamydia pneumoniae and human IL-2. Chinese Journal of Zoonoses,2009,25(9):837-841.
[18] 赵占中,薛飞群. DNA疫苗的免疫佐剂. 中国动物传染病学报,2010,18(2):79-86. Zhao Z Z,Xue F Q. The adjuvants for DNA vaccines. Chinese Journal of Veterinary Parasitology,2010,18(2):79-86.
[19] Zhang Y,Liang S,Li X,et al. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation. Vaccine,2015,33(30):3480-3487.
[20] Staats H F,Bradney C P,Gwinn W M,et al. Cytokine requirements for induction of systemic and mucosal CTL after nasal immunization. J Immunol,2001,167(9):5386-5394.
[21] 孟庆峰,徐展,王伟利. 活载体疫苗的研究进展. 黑龙江畜牧兽医,2013,19:28-31. Meng Q F,Xu Z,Wang W L. Research progress of the live vector vaccine. Heilongjiang Animal Science and Veterinary Medicine,2013,19:28-31.
[22] Zhou J,Qiu C,Cao X A,et al. Construction and immunogenicity of recombinant adenovirus expressing the major outer membrane protein (MOMP) of Chlamydophila psittaci in chicks. Vaccine,2007,25(34):6367-6372.
[23] He Q,Martinez-Sobrido L,Eko F O,et al. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines. Immunology,2007,122(1):28-37.
[24] Penttilä T,Tammiruusu A,Liljeström P,et al. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine,2004,22(25-26):3386-3394.
[25] 靳小攀,季守平. 细菌菌影在DNA疫苗研究中的作用. 中国生物工程杂志,2010,30(7):92-96. Jin X P,Ji S P. Research in bacterial ghost as DNA vaccine delivery system. China Biotechnology,2010,30(7):92-96.
[26] Eko F O,Lubitz W,McMillan L,et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine,2003,21(15):1694-1703.
[27] Eko F O,He Q,Brown T,et al. A novel recombinant multisubunit vaccine against Chlamydia. J Immunol,2004,173(5):3375-3382.
[28] Macmillan L,Ifere G O,He Q,et al. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol Med Microbiol,2007,49(1):46-55.
[29] 潘青. 猪流产衣原体Pmp18N-rVCG疫苗的构建、小鼠免疫评价和机制研究. 北京:中国农业大学,2015. Pan Q. Construction and comparative evaluation of Chlamydia abortus subunit candidate vaccine rVCG-Pmpl8N in a mouse model and immune mechanism of DC pulsed with Pmpl8N. Beijing:China Agricultural University,2015.
[30] Sivakumar S M,Safhi M M,Kannadasan M,et al. Vaccine adjuvants-current status and prospects on controlled release adjuvancity. Saudi Pharm J,2011,19(4):197-206.
[31] Hansen J,Jensen K T,Follmann F,et al. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J Infect Dis,2008,198(5):758-767.
[32] Yu H,Karunakaran K P,Jiang X,et al. Chlamydia muridarum T cell antigens and adjuvants that induce protective immunity in mice. Infect Immun,2012,80(4):1510-1518.
[33] Stary G,Olive A,Radovic-Moreno A F,et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science,2015,348(6241):8205.
[34] Dixit S,Singh S R,Yilma A N,et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomedicine,2014,10(6):1311-1321.
[35] Fairley S J,Singh S R,Yilma A N,et al. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper1cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine,2013,8(1):2085-2099.

[1] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[2] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[3] 程旭,杨雨睛,吴赛男,侯勤龙,李咏梅,韩慧明. 金黄色葡萄球菌SarAIcaA及其融合基因的DNA疫苗构建及在小鼠免疫应答中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 41-50.
[4] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[5] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[6] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[7] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[8] 廖小艳,陈丽丽. COVID-19疫苗研究现状*[J]. 中国生物工程杂志, 2020, 40(12): 8-17.
[9] 冯雪娇,侯海龙,喻琼,王俊姝. 我国宫颈癌疫苗市场分析及对策研究*[J]. 中国生物工程杂志, 2020, 40(11): 96-101.
[10] 高彦,杜晶晶,王斌,刘琦,申志强. 气相色谱法对狂犬病疫苗灭活工艺中β-丙内酯研究[J]. 中国生物工程杂志, 2019, 39(6): 25-31.
[11] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[12] 许嘉越,李紫倩,张革. 登革病毒3'UTRΔ30系列疫苗的研究进展[J]. 中国生物工程杂志, 2019, 39(3): 97-104.
[13] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[14] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.
[15] 郭乐,王淑娥,何萌,张帆,刘宏鹏,刘昆梅. 幽门螺杆菌多价表位疫苗CWAE的表达及其免疫学性质的研究 *[J]. 中国生物工程杂志, 2019, 39(12): 1-8.