Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 96-103    DOI: 10.13523/j.cb.1906018
综述     
免疫佐剂在肿瘤免疫疗法中的应用进展 *
钱颖,钱晨,白晓庆,王晶晶()
南京中医药大学药学院 南京 210023
Application of Adjuvant in Cancer Immunotherapy
QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing()
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
 全文: PDF(691 KB)   HTML
摘要:

免疫疗法是预防和治疗疾病的有效手段之一.近年来,肿瘤免疫疗法已成为一种新型治疗方法,相关肿瘤疫苗已在多种肿瘤的治疗中被证明有效.然而,在肿瘤疫苗的设计中,肿瘤抗原免疫原性弱,应答率低等问题是目前面对的一大挑战,佐剂的加入为问题的解决提供了一种新的方法和思路.免疫佐剂在提高肿瘤抗原免疫原性,激活机体适应性免疫应答等方面起着十分重要的作用.为了解近几年免疫佐剂的发展及其研究现状,针对目前常用的抗肿瘤佐剂进行综述,并总结了其对免疫系统的作用机制,为后续的疫苗设计策略提供帮助.

关键词: 佐剂肿瘤疫苗免疫应答    
Abstract:

Immunotherapy is one of the effective methods to prevent and treat diseases. In recent years, tumor immunotherapy has become a new treatment method and related anti-tumor vaccines have been proved to be effective in the treatment of a variety of tumors. However, in the design of tumor vaccine, the problems of weak immunogenicity and low response rate of tumor antigens are a major challenge. The addition of adjuvants provides a new way to solve the problem. Immune adjuvants play an important role in improving the immunogenicity of tumor antigens and activating adaptive immune response. In order to understand the development and research status of immune adjuvants in recent years, the adjuvants commonly used in tumor vaccine were reviewed, and the mechanism of adjuvant on immune system was summarized, which provided help for vaccine design strategy in future.

Key words: Adjuvant    Tumor vaccine    Immune response
收稿日期: 2019-06-13 出版日期: 2020-04-18
ZTFLH:  Q5  
基金资助: * 江苏高校优势学科建设工程(PAPD)资助项目
通讯作者: 王晶晶     E-mail: jingjingwang123456@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钱颖
钱晨
白晓庆
王晶晶

引用本文:

钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.

QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy. China Biotechnology, 2020, 40(3): 96-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1906018        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/96

图1  常用合成类及天然类佐剂的化学结构
[1] Antje T, Maximilian K, Rebekka W , et al. Immune monitoring of cancer patients prior to and during CTLA-4 or PD-1/PD-L1 inhibitor treatm ent. Biomedicines, 2018,6(1):26-39.
[2] Soares K C, Rucki A A, Wu A A , et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. Journal of Immunotherapy, 2015,38(1):1-11.
[3] 司春枫, 鲁美钰, 周玲 , 等. 肿瘤疫苗免疫策略研究进展. 现代肿瘤医学, 2016,24(15):2478-2482.
Si C F, Lu M Y, Zhou L , et al. Research progress of tumor vaccine strategy. Journal of Modern Oncology, 2016,24(15):2478-2482.
[4] Holay N, Kim Y, Lee P , et al. Sharpening the edge for precision cancer immunotherapy: targeting tumor antigens through oncolytic vaccines. Frontiers in Immunology, 2017,8:800.
[5] Klevorn L E, Teague R M . Adapting cancer immunotherapy models for the real world. Trends in Immunology, 2016,37(6):354-363.
[6] Littman D . Releasing the brakes on cancer immunotherapy. Cell, 2015,162(6):1186-1190.
[7] 高花, 韩勇, 翟晓鑫 , 等. MHC分子抗原递呈机制的研究进展. 生命科学, 2017,29(5):450-461.
Gao H, Han Y, Zhai X X , et al. The research progress of antigen presentation by MHC molecules, Chinese Bulletin Life Sciences, 2017,29(5):450-461.
[8] Yarchoan M, Johnson B A, Lutz E R , et al. Targeting neoantigens to augment antitumour immunity. Nature Reviews Cancer, 2017,17(4):209-222.
[9] Vermaelen K . Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunology, 2019,10:8.
[10] Hu Z, Ott P A, Wu C J . Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature reviews Immunology, 2018,18(3):168-182.
[11] Zevini A, Olagnier D, Hiscott J . Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends in Immunology, 2017,38(3):194-205.
[12] Vasou A, Sultanoglu N, Goodbourn S , et al. Targeting pattern recognition receptors (PRR) for vaccine adjuvantation: from synthetic PRR agonists to the potential of defective interfering particles of viruses. Viruses, 2017,9(7):186.
[13] Zhu G M, Vishwasrao H D, Jacobson O , et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2017,8(1):1482.
[14] Wang C, Ye Y, Hu Q , et al. Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Advanced Materials, 2017,29(29):1606036.
[15] Song W, Das M, Xu Y , et al. Leveraging biomaterials for cancer immunotherapy: targeting pattern recognition receptors. Materials Today Nano, 2019,5:100029.
[16] Bianchi F, Pretto S, Tagliabue E , et al. Exploiting poly (I: C) to induce cancer cell apoptosis. Cancer Biology & Therapy, 2017,18(10):747-756.
[17] Bianchi F, Pretto S, Tagliabue E , et al. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biology & Therapy, 2017,18(10):747-756.
[18] Fan L, Zhou P, Hong Q , et al. Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. OncoImmunology, 2019,8(6):1-12.
[19] Azuma M, Takeda Y, Nakajima H , et al. Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncoimmunology, 2016,5(8):e1188244.
[20] Vivas I, Itibarren K, Lozano T , et al. Therapeutic effect of irreversible electroporation in combination with Poly-ICLC adjuvant in preclinical models of hepatocellular carcinoma. Journal of Vascular and Interventional Radiology, 2019,30(7):1098-1105.
[21] Fakhari A, Nugent S, Elvecrog J , et al. Thermosensitive gel based formulation for intra-tumoral delivery of Toll-like receptor 7/8 dual agonist, MEDI9197. Journal of Pharma-ceutical Sciences, 2017,106(8):2037-2045.
[22] Meng Z, Lu M . RNA interference-induced innate immunity, off-target effect, or immune adjuvant. Frontiers in Im-munology, 2017,8:331-337.
[23] Dowling D J . Recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants. Immunohorizons, 2018,2(6):185-197.
[24] Rodell C B, Arlauckas S P, Cuccarese M F , et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering, 2018,2(8):578-588.
[25] Kayraklioglu N, Scheiermann J, Alvord W G , et al. Effect of calcium carbonate encapsulation on the activity of orally administered CpG oligonucleotides. Molecular Therapy Nu-cleic Acids, 2017,8:243-249.
[26] 徐宁, 杜锐, 李健明 , 等. 新型免疫增强剂CpG ODN的研究进展. 安徽农业科学, 2019,47(6):8-10.
Xu N, Du R, Li J M , et al. Research progress of the new immunopotentiator CpG ODN. Journal of Anhui Agricultural Sciences, 2019,47(6):8-10.
[27] Sato T, Shimosato T, Ueda A , et al. Intrapulmonary delivery of CpG microparticles eliminates lung tumors. Molecular Cancer Therapeutics, 2015,14(10):2198-2205.
[28] Tian Y, Li M, Yu C , et al. The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth in vivo. Oncotarget, 2017,8(28):45951-45964.
[29] Kuai R, Sun X, Yuan W , et al. Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. Journal of Controlled Release, 2018,28:131-139.
[30] Shetab Boushehri M A, Lamprecht A . TLR4-Based immunotherapeutics in cancer: a review of the achievements and shortcomings. Molecular Pharmaceutics, 2018,15(11):4777-4800.
[31] Moon S H, Shin E C, Noh Y W , et al. Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine. Vaccine, 2015,33(38):4762-4769.
[32] Huimin Y, Tomomori K, Papawee S , et al. Targeting C-type lectin receptors for cancer immunity. Frontiers in Immunology, 2015,6:408.
[33] Yang R, Xu J, Xu L , et al. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. Acs Nano, 2018,12(6):5121-5129.
[34] Hung T H, Chiu Y H, Chan Y L , et al. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Marine Drugs, 2015,13(4):1882-1900.
[35] Chiang C S, Lin Y J, Lee R , et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nature Nanotechnology, 2018,13(8):746-754.
[36] De G P, Govers C, Wichers H J , et al. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opinion on Biological Therapy, 2018,18(10):1023-1040.
[37] Liang F, Lindgren G, Sandgren K J , et al. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Science Translational Medicine, 2017,9(393):2094-2103.
[38] Lebre F, Pedroso L M, Lavelle E C , et al. Mechanistic study of the adjuvant effect of chitosan-aluminum nanoparticles. International Journal of Pharmaceutics, 2018,552(1-2):7-15.
[39] Oleszycka E, Lavelle E C . Immunomodulatory properties of the vaccine adjuvant alum. Current Opinion in Immunology, 2014,28:1-5.
[40] Liu H, Jia Z, Yang C , et al. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials, 2018,167:32-43.
[41] Silva A, Soema P C, Slütter B , et al. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Human Vaccines, 2016,12(4):1056-1069.
[42] Lin Y F, Lee Y H, Hsu Y H , et al. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine, 2017,12(22):2741-2756.
[43] Meyer R A, Sunshine J C, Perica K , et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small, 2015,11(13):1519-1525.
[44] Chen Q, Xu L, Liang C , et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016,7:13193.
[45] Dong H, Wen Z F, Chen L , et al. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. International Journal of Nanomedicine, 2018,13:3353-3365.
[46] Luo M, Wang H, Wang Z , et al. A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 2017,12(7):648-654.
[47] Qiu L, Valente M, Dolen Y , et al. Endolysosomal-escape nanovaccines through adjuvant-induced tumor antigen assembly for enhanced effector CD8 + T Cell activation . Small, 2018,14(15):1703539.
[48] Li A W, Sobral M C, Badrinath S , et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018,17(6):528-534.
[49] 陈泽锋, 白丽 . 抗肿瘤多肽类药物的来源及其机制的研究进展. 免疫学杂志, 2018,34(12):93-98.
Chen Z F, Bai L . Research progress in the source and mechanism of the anti-tumor polyprptide drugs. Immunological Journal, 2018,34(12):93-98.
[50] Qi G B, Gao Y J, Wang L , et al. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Advanced Materials, 2018,30(22):e1703444.
[51] Luo Z, Wu Q, Yang C , et al. A powerful CD8 + T-Cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant . Advanced Materials, 2017,29(5):1601776.
[52] Wang H, Luo Z, Wang Y , et al. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Advanced Functional Materials, 2016,26(11):1822-1829.
[53] 张瑾 . 华蟾毒精抗原佐剂效应与增强肿瘤特异性免疫的作用机制研究. 吉林:吉林大学, 2014.
Zhang J . Research on immunologic adjuvant effects of Cinobufagin and its enhancement function of tumor-specific immune response. Jilin: Jilin University, 2014.
[54] Kumar P, Bhadauria A S, Singh A K , et al. Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 2018,209:24-33.
[55] Dash S K, Chattopadhyay S, Tripathy S , et al. Self-assembled betulinic acid augments immunomodulatory activity associates with IgG response. Biomedicine & Pharmacotherapy, 2015,75:205-217.
[56] 苗莹, 刘华强, 王红程 . 原花青素在抗肿瘤机制中的研究进展. 中国临床药理学杂志, 2019,35(14):1541-1544.
Miao Y, Liu H Q, Wang H C . Research progress of anti-tumor mechanism of proanthocyanidins. The Chinese Journal of Clinical Pharmacology, 2019,35(14):1541-1544.
[57] 张丽娜, 王爽, 刘泽媛 , 等. 四种中药单体作为肿瘤细胞疫苗佐剂的体外筛选研究. 中国免疫学杂志, 2016,32(4):504-508.
Zhang L N, Wang S, Liu Z Y , et al. Screening tumor vaccine adjuvants from four kinds of Chinese herbal monomer in vitro. Chinese Journal of Immunology, 2016,32(4):504-508.
[58] 朱晓丽 . 人参皂苷药理作用研究进展. 中国药物经济学, 2017,12(12):154-156.
Zhu X L . Research progress of pharmacological action of Panax Ginseng. China Journal of Pharmaceutical Economics, 2017,12(12):154-156.
[59] Rivera E, Ekholm Pettersson F, Inganas M , et al. The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine, 2005,23(46-47):5411-5419.
[60] Su F, Yuan L, Zhang L , et al. Ginsenosides Rg1 and Re act as adjuvant via TLR4 signaling pathway. Vaccine, 2012,30(27):4106-4112.
[61] 朱喆, 蔡泓志, 李映波 . 中草药提取物作为疫苗佐剂的研究进展. 医学研究杂志, 2018,47(5):7-10.
Zhu Z, Cai H Z, Li Y B . Research progress of vaccine adjuvants of Chinese herbal. Journal of Medical Research, 2018,47(5):7-10.
[62] 侯玮婷, 罗佳波 . 复方茯苓多糖口服液抗肿瘤作用和免疫调节功能的初步研究. 中药药理与临床, 2017,33(2):78-81.
Hou W T, Luo J B . The study of the compound poria polysaccharide oral liquid on the antitumor activity and immune regulation function. Pharmacology and Chinese Materia Medica, 2017,33(2):78-81.
[63] Bo R, Sun Y, Zhou S , et al. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. International Journal of Nanomedicine, 2017,12:6289-6301.
[1] 杨琳,傅哲彦,吕正兵,舒建洪. 免疫佐剂分类及作用机制[J]. 中国生物工程杂志, 2019, 39(5): 114-119.
[2] 冯雪军, 龙琼, 唐增华, 黄惟巍, 刘存宝, 杨旭, 孙文佳, 白红妹, 马雁冰. 重组小鼠白细胞介素-33的原核表达制备及其粘膜免疫佐剂活性[J]. 中国生物工程杂志, 2017, 37(4): 26-32.
[3] 符玺宗, 柏琴琴, 陈丽丽. 佐剂在衣原体疫苗中应用的研究进展[J]. 中国生物工程杂志, 2016, 36(10): 101-105.
[4] 王丹阳, 杨雨, 杨秀梅, 张富春, 吴道澄, 张爱莲. PolyI:C协同IL-15作为小鼠卵透明带3基因疫苗佐剂黏膜免疫效果的观察[J]. 中国生物工程杂志, 2015, 35(9): 7-13.
[5] 满朝来, 常杨, 唐高霞, 赵丽, 李凤, 甄鑫, 弭晓菊. 基因佐剂的研究进展[J]. 中国生物工程杂志, 2013, 33(7): 112-117.
[6] 李艳红, 李晓波, 陆雪莹, 高剑峰, 肖向文. 熊果酸增强小鼠肝癌细胞疫苗免疫原性的作用[J]. 中国生物工程杂志, 2013, 33(10): 28-35.
[7] 陈鳌, 余云舟, 王文斌, 庞晓斌, 王双, 俞炜源, 孙志伟. 不同佐剂条件下Aβ多肽B细胞表位疫苗诱导产生抗体的免疫反应特性分析[J]. 中国生物工程杂志, 2011, 31(8): 18-23.
[8] 楼曜宪, 邹强, 靳津, 王宪政, 张一帜, 王宾. IL-17作为分子佐剂增强蛋白疫苗细胞免疫应答的研究[J]. 中国生物工程杂志, 2011, 31(7): 20-26.
[9] 孙英军, 张艳, 吴琼, 郑海学, 张志东. 固有免疫学的研究进展及其对研制新型免疫佐剂的启示[J]. 中国生物工程杂志, 2011, 31(03): 87-90.
[10] 高丹丹,彭正华,杨旭,毕研伟,李智华,姬秋彦,李建芳,李健峰,徐维明. 治疗型VP22△-mE6△/mE7重组蛋白疫苗的表达与免疫学初步分析[J]. 中国生物工程杂志, 2009, 29(04): 6-11.
[11] 徐海,侯红岩,邓碧华,郑其升,侯继波. 禽流感病毒M2、NP融合蛋白与多种佐剂的联合运用及对免疫原性影响[J]. 中国生物工程杂志, 2009, 29(02): 42-47.
[12] 牟伟锋,金宁一,鲁承,霍晓伟,胡博,屈勇刚,常巧呈,于长勇,颜雯,丛艳昭,曹世诺. Asia-Ⅰ口蹄疫病毒P1-2A基因真核表达质粒的构建及小鼠免疫试验[J]. 中国生物工程杂志, 2008, 28(8): 31-35.
[13] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[14] 彭海林 宋凯 叶赛 宋怀光 刘锋 徐斌 张庆华. 利用基因免疫进行日本血吸虫Sj22蛋白抗体制备的研究[J]. 中国生物工程杂志, 2007, 27(1): 6-10.
[15] 张国广,曾雅明,李东霄,张红心,陈亮. 霍乱弧菌CTB基因的克隆、表达及重组蛋白活性分析[J]. 中国生物工程杂志, 2006, 26(10): 13-17.