Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 33-41    DOI: 10.13523/j.cb.2105047
技术与方法     
利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*
朱潇静1,王芮1,张欣欣1,靳家鑫1,路闻龙1,丁大顺1,霍翠梅2,李青梅3,孙爱军1,**,庄国庆1,**()
1 河南农业大学动物医学院 国家动物免疫学国际联合研究中心 郑州 450002
2 济宁市畜牧业发展中心 济宁 272004
3 河南省农业科学院 郑州 450002
Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique
ZHU Xiao-jing1,WANG Rui1,ZHANG Xin-xin1,JIN Jia-xin1,LU Wen-long1,DING Da-shun1,HUO Cui-mei2,LI Qing-mei3,SUN Ai-jun1,**,ZHUANG Guo-qing1,**()
1 International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
2 Jining City Animal Husbandry Development Center, Jining 272004, China
3 Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
 全文: PDF(1186 KB)   HTML
摘要:

目的:预防马立克氏病病毒(MDV)和新城疫病毒(NDV)混合感染鸡引起的疾病,构建表达NDV F蛋白的MDV疫苗株CVI988 BAC重组载体,并包装成重组病毒,为疫苗免疫提供更多的重组疫苗选择。方法:首先利用PCR扩增带有卡那霉素(Kanamycin,Kana)抗性基因片段的F基因,采用同源重组的方法将其整合到CVI988 BAC上,进一步诱导I-SceI表达敲除Kana基因而获得重组质粒CVI988 BAC-F。通过磷酸钙法转染鸡胚成纤维细胞获得重组病毒。结果:Western blot和间接免疫荧光实验证实重组病毒能够表达F蛋白。病毒生长曲线和蚀斑大小测定结果表明,F基因的插入不影响病毒的体外增殖。结论:利用BAC技术成功构建了整合F基因的重组MDV病毒CVI988 BAC-F,为MDV重组疫苗研发,防控NDV与MDV共感染奠定了基础。

关键词: 细菌人工染色体新城疫病毒F基因马立克氏病毒重组疫苗    
Abstract:

Objective: Marek’s disease virus (MDV) is an alphaherpesvirus and is classified into three serotypes: MDV serotype 1 (MDV-1) which includes the pathogenic strains and their derivatives; MDV serotype 2 (MDV-2) which consists of non-oncogenic viruses; and MDV serotype 3 (MDV-3), which is also referred to as turkey herpesvirus 1 (HVT). All three MDV serotypes have been used as vaccines. CVI988 is a cell culture passage attenuated MDV-1 virus and the gold standard among MD vaccines. CVI988 could be used as a viral vector to express exogenous gene. MDV and Newcastle disease virus (NDV) co-infection in chickens is very popular in the field, but there are few candidates of recombinant vaccines to prevent the infection of both viruses at the same time. Methods: In this study, CVI988 expressing F gene was constructed by the bacterial artificial chromosome (BAC) technology and packaged into recombinant virus. After it was amplified by PCR, the F gene together with Kana gene fragment was integrated into CVI988 BAC by homologous recombination to generate CVI988 BAC-F. Subsequently, CVI988 BAC-F was transfected into chicken embryo fibroblast (CEF) cells by calcium phosphate to rescue recombinant virus, which was confirmed by Western blotting and indirect immunofluorescence assay (IFA) assays. Results: The results of virus growth curve and plaque area measurement showed that the insertion of F gene did not affect virus proliferation in vitro. Conclusion: We successfully constructed a recombinant CVI988 BAC virus, which provides a basis for development of novel vaccines to prevent and control co-infection of NDV and MDV.

Key words: Bacterial artificial chromosome    Newcastle disease virus    F genes    Marek’s disease virus    Recombinant vaccines
收稿日期: 2021-05-25 出版日期: 2021-11-08
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31802160);河南省留学人员科研择优项目(30602136);河南省高等学校重点科研项目(22A230011)
通讯作者: 孙爱军,庄国庆     E-mail: gqzhuang2008@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱潇静
王芮
张欣欣
靳家鑫
路闻龙
丁大顺
霍翠梅
李青梅
孙爱军
庄国庆

引用本文:

朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.

ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique. China Biotechnology, 2021, 41(10): 33-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105047        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/33

名称 引物基因序列(5'-3')
P1-F CGATATACATTTGCTTATTTCGCTGTCCACCCATAACCGAGAGTTGACATTGATTATTG
P1-R CATCTATACTATTATAACATACTTGTATCATTAAGTTCCATACCATAGAGCCCACCGCATC
P2-F GTAGATTCTTCTGGTTCG
P2-R CTGTGAAAATTTAT CCC
表1  PCR引物序列
名称 引物基因序列(5'-3')
OVO-F CACTGCCACTGGGCTCTGT
OVO-R GCAATGGCAATAAACCTCCAA
ICP4-F TTATTGCCCCGTACTCACCG
ICP4-R CATTTAAAGTCTTTCATGCCAAAC
表2  qPCR引物序列
图1  F-Kana基因PCR扩增结果
图2  PCR鉴定电转化结果
图3  去除Kana基因PCR鉴定结果
图4  重组病毒CVI988 BAC-F表达鉴定结果
图5  重组病毒CVI988 BAC-F的体外增殖比较
[1] 孙爱军, 张改平, 庄国庆. meqlorf9双基因缺失显著降低超强马立克氏病病毒的复制能力. 科学通报, 2020, 65(Z1): 167-173.
Sun A J, Zhang G P, Zhuang G Q. Meq and lorf9 deletion significantly reduced capacity of replication of very virulent Marek’s disease virus. Chinese Science Bulletin, 2020, 65(Z1): 167-173.
[2] 崔治中, 苏帅, 罗俊, 等. 鸡马立克病毒的研究进展. 微生物学通报, 2019, 46(7): 1812-1826.
Cui Z Z, SU S, Luo J, et al. Progress in Marek’s disease virus. Microbiology China, 2019, 46(7): 1812-1826.
[3] 崔雪志, 韩薇, 秦立廷, 等. 一例肉种鸡马立克氏病的诊断. 中国家禽, 2017, 39(2): 71-73.
Cui X Z, Han W, Qin L T, et al. Diagnosis of a case of Marek’s disease in broiler breeder. China Poultry, 2017, 39(2): 71-73.
[4] Baigent S J, Smith L P, Nair V K, et al. Vaccinal control of Marek’s disease: current challenges, and future strategies to maximize protection. Veterinary Immunology and Immunopathology, 2006, 112(1-2): 78-86.
pmid: 16682084
[5] Calnek B W, Schat K A, Peckham M C, et al. Field trials with a bivalent vaccine (HVT and SB-1) against Marek’s disease. Avian Diseases, 1983, 27(3): 844-849.
pmid: 6314982
[6] Lee L F. 马立克氏病新一代疫苗的研究与应用. 中国家禽, 2010, 32(19): 37-40.
Lee L F. Research and application of new generation vaccine against Marek’s disease. Chinese Poultry, 2010, 32(19): 37-40.
[7] 袁金城, 卢存义, 刘玉云, 等. 鸡马立克氏病1型(CVI988/rispens)活疫苗的研制. 中国兽药杂志, 2001, 35(3): 4-7.
Yuan J C, Lu C Y, Liu Y Y, et al. Development of Marek’s disease live vaccine (CVI988/rispen). Chinese Journal of Veterinary Drug, 2001, 35(3): 4-7.
[8] de Boer G F, Groenendal J E, Boerrigter H M, et al. Protective efficacy of Marek’s disease virus (MDV) CVI-988 CEF65 clone C against challenge infection with three very virulent MDV strains. Avian Diseases, 1986, 30(2): 276-283.
pmid: 3015113
[9] Li K, Liu Y Z, Liu C J, et al. Recombinant Marek’s disease virus type 1 provides full protection against very virulent Marek’s and infectious bursal disease viruses in chickens. Scientific Reports, 2016, 6: 39263.
doi: 10.1038/srep39263
[10] Dimitrov K M, Afonso C L, Yu Q Z, et al. Newcastle disease vaccines-a solved problem or a continuous challenge. Veterinary Microbiology, 2017, 206: 126-136.
doi: S0378-1135(16)30804-5 pmid: 28024856
[11] Diel D G, Susta L, Cardenas Garcia S, et al. Complete genome and clinicopathological characterization of a virulent Newcastle disease virus isolate from South America. Journal of Clinical Microbiology, 2012, 50(2): 378-387.
doi: 10.1128/JCM.06018-11
[12] Cardenas Garcia S, Navarro Lopez R, Morales R, et al. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Applied and Environmental Microbiology, 2013, 79(16): 4985-4992.
doi: 10.1128/AEM.00993-13
[13] Alders R G. Making Newcastle disease vaccines available at village level. Veterinary Record, 2014, 174(20): 502-503.
doi: 10.1136/vr.g3209 pmid: 24832887
[14] Susta L, Jones M E B, Cattoli G, et al. Pathologic characterization of genotypes XIV and XVII Newcastle disease viruses and efficacy of classical vaccination on specific pathogen-free birds. Veterinary Pathology, 2015, 52(1): 120-131.
doi: 10.1177/0300985814521247 pmid: 24510948
[15] Boursnell M E, Green P F, Campbell J I, et al. Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant. The Journal of General Virology, 1990, 71(Pt 3): 621-628.
doi: 10.1099/0022-1317-71-3-621
[16] Morgan R W, Gelb J, Schreurs C S, et al. Protection of chickens from Newcastle and Marek’s diseases with a recombinant herpesvirus of turkeys vaccine expressing the Newcastle disease virus fusion protein. Avian Diseases, 1992, 36(4): 858-870.
pmid: 1485872
[17] Palya V, Kiss I, Tatár-Kis T, et al. Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Diseases, 2012, 56(2): 282-287.
pmid: 22856183
[18] Palya V, Tatár-Kis T, Mató T, et al. Onset and long-term duration of immunity provided by a single vaccination with a Turkey herpesvirus vector ND vaccine in commercial layers. Veterinary Immunology and Immunopathology, 2014, 158(1-2): 105-115.
doi: 10.1016/j.vetimm.2013.11.008
[19] Bertran K, Lee D H, Criado M F, et al. Maternal antibody inhibition of recombinant Newcastle disease virus vectored vaccine in a primary or booster avian influenza vaccination program of broiler chickens. Vaccine, 2018, 36(43): 6361-6372.
doi: S0264-410X(18)31264-7 pmid: 30241684
[20] Sonoda K, Sakaguchi M, Okamura H, et al. Development of an effective polyvalent vaccine against both Marek’s and Newcastle diseases based on recombinant Marek’s disease virus type 1 in commercial chickens with maternal antibodies. Journal of Virology, 2000, 74(7): 3217-3226.
pmid: 10708438
[21] le Gros F X, Dancer A, Giacomini C, et al. Field efficacy trial of a novel HVT-IBD vector vaccine for 1-day-old broilers. Vaccine, 2009, 27(4): 592-596.
doi: 10.1016/j.vaccine.2008.10.094 pmid: 19041678
[22] Chi X J, Wang X J, Wang C Y, et al. In vitro and in vivo broad antiviral activity of peptides homologous to fusion glycoproteins of Newcastle disease virus and Marek’s disease virus. Journal of Virological Methods, 2014, 199: 11-16.
doi: 10.1016/j.jviromet.2013.12.022
[23] Lemiere S, Fernández R, Pritchard N, et al. Concomitant Turkey herpesvirus-infectious bursal disease vector vaccine and oil-adjuvanted inactivated Newcastle disease vaccine administration: consequences for vaccine intake and protection. Avian Diseases, 2011, 55(4): 642-649.
doi: 10.1637/9751-040511-ResNote.1
[24] Ferreira H L, Reilley A M, Goldenberg D, et al. Protection conferred by commercial NDV live attenuated and double recombinant HVT vaccines against virulent California 2018 Newcastle disease virus (NDV) in chickens. Vaccine, 2020, 38(34): 5507-5515.
doi: S0264-410X(20)30765-9 pmid: 32591288
[25] Sun A J, Yang S K, Luo J, et al. UL28 and UL33 homologs of Marek’s disease virus terminase complex involved in the regulation of cleavage and packaging of viral DNA are indispensable for replication in cultured cells. Veterinary Research, 2021, 52(1): 20.
doi: 10.1186/s13567-021-00901-5
[26] Darteil R, Bublot M, Laplace E, et al. Herpesvirus of Turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology, 1995, 211(2): 481-490.
pmid: 7645252
[27] Tsukamoto K, Kojima C, Komori Y, et al. Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV) with a recombinant MDV expressing IBDV VP2. Virology, 1999, 257(2): 352-362.
pmid: 10329546
[28] 张芙寿. 表达H5N2亚型禽流感病毒HA抗原重组马立克氏病病毒的构建. 泰安: 山东农业大学, 2015.
Zhang F S. Construction of recombination Marek’s disease viruses(MDVs) expressing H5N2-HA. Taian: Shandong Agricultural University, 2015.
[29] 刘成, 司振书, 郭晶, 等. CRISPR/Cas9基因编辑技术在禽病毒病研究中的应用. 中国预防兽医学报: [2021-05-25]. http://kns.cnki.net/kcms/detail/23.1417.S.20210105.1336.002.html.
Liu C, Si Z S, Guo J, et al. Application of CRISPR/Cas9 gene editing technology in the study of avian virus diseases. Chinese Journal of Preventive Veterinary Medicine: [2021-05-25]. http://kns.cnki.net/kcms/detail/23.1417.S.20210105.1336.002.html.
[30] 孙爱军, 王向茹, 杨帅康, 等. 一种快速精确编辑疱疹病毒基因组的方法. 生物工程学报, 2021, 37(4): 1376-1384.
Sun A J, Wang X R, Yang S K, et al. A rapid and accurate method for herpesviral gnome editing. Chinese Journal of Biotechnology, 2021, 37(4): 1376-1384.
[31] Shi M Y, Li M, Wang W W, et al. The emergence of a vv + MDV can break through the protections provided by the current vaccines. Viruses, 2020, 12(9): 1048.
doi: 10.3390/v12091048
[32] 田明星. 四川部分地区鸡马立克病毒分子流行病学调查. 雅安: 四川农业大学, 2011.
Tian M X. Molecular epidemiologic survey on Marek’s disease virus in some districts of Sichuan Province. Yaan: Sichuan Agricultural University, 2011.
[33] van Hulten M C W, Cruz-Coy J, Gergen L, et al. Efficacy of a Turkey herpesvirus double construct vaccine (HVT-ND-IBD) against challenge with different strains of Newcastle disease, infectious bursal disease and Marek’s disease viruses. Avian Pathology, 2021, 50(1): 18-30.
doi: 10.1080/03079457.2020.1828567
[34] 许曾焜. 表达新城疫病毒F蛋白重组火鸡疱疹病毒的构建及免疫原性初步评价. 北京: 中国农业科学院, 2020.
Xu Z K. Construction and preliminary immunogenicity evaluation of recombinant HVT expressing Newcastle disease virus F protein. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[35] Rauw F, Ngabirano E, Gardin Y, et al. Effectiveness of a simultaneous rHVT-F(ND) and rHVT-H5(AI) vaccination of day-old chickens and the influence of NDV- and AIV-specific MDA on immune response and conferred protection. Vaccines, 2020, 8(3): 536.
doi: 10.3390/vaccines8030536
[36] 闫帅, 崔红玉, 李巧玲, 等. 表达鸡新城疫病毒F蛋白的重组马立克氏病毒的构建及其鉴定. 中国预防兽医学报, 2012, 34(6): 423-427.
Yan S, Cui H Y, Li Q L, et al. Construction and identification of recombinant Marek’s disease virus vaccine strain 814 expressing the F protein of NDV. Chinese Journal of Preventive Veterinary Medicine, 2012, 34(6): 423-427.
[1] 梁莹, 刘金颖, 樊晓辉, 宋德志, 肖庆, 殷君, 冯安林, 杨利, 周丹旎, 赖振屏. 新城疫病毒7793株HN基因片段原核表达及功能鉴定[J]. 中国生物工程杂志, 2013, 33(8): 32-37.
[2] 揣侠 谭文杰. 以BAC为基础的水痘-带状疱疹病毒的感染性克隆技术及其应用[J]. 中国生物工程杂志, 2010, 30(05): 110-115.
[3] 张立娜,贾竞波. 不同基因型新城疫病毒HN基因保守区域的克隆表达及免疫活性的比较[J]. 中国生物工程杂志, 2008, 28(5): 93-98.
[4] 夏晗,李爱芹,卢金东,毕玉平,王兴军. 可转化大片段DNA载体系统及其在花生育种中的应用前景[J]. 中国生物工程杂志, 2008, 28(5): 128-134.
[5] 辛艳丽, 贾玉艳, 王恒梁, 邓继先. 利用Red系统快速改构含鼠β-酪蛋白基因的细菌人工染色体[J]. 中国生物工程杂志, 2005, 25(8): 45-50.
[6] 詹万雷, 林影, 郑文岭. 基因工程乙肝疫苗研究进展[J]. 中国生物工程杂志, 2003, 23(4): 62-64.
[7] 王倩, 王斌. 细菌人工染色体的研究和应用[J]. 中国生物工程杂志, 2002, 22(3): 18-24.
[8] 胡炜, 朱作言. BAC及其转基因研究进展[J]. 中国生物工程杂志, 2001, 21(4): 3-7.
[9] 韩迎山. 美创造出脓毒性咽喉炎重组疫苗[J]. 中国生物工程杂志, 1990, 10(1): 60-61.
[10] JohnBeale, 范树田. 重组疫苗预防乙型肝炎[J]. 中国生物工程杂志, 1985, 5(1): 11-12.