Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (6): 9-17    DOI: 10.13523/j.cb.20160602
研究报告     
帕比司他逆转前列腺癌细胞hepaCAM基因表达机制研究
陈娥1, 欧俐苹1, 唐敏1, 刘南京1, 吴小候2, 罗春丽1
1. 重庆医科大学检验医学院临床检验诊断学教育部重点实验室 重庆 400016;
2. 重庆医科大学附属第一医院 重庆 400016
The Mechanisms of Panobinostat Reversing HepaCAM Gene Expression in Prostate Cancer
CHEN Er1, OU Li-ping1, TANG Min1, LIU Nan-jing1, WU Xiao-hou2, LUO Chun-li1
1. Key Laboratory of Clinical Laboratory Diagnostics of Ministry of Education, Faculty of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China;
2. Department of Urinary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1439 KB)   HTML
摘要:

目的:研究帕比司他(Panobinostat)逆转抑癌基因肝细胞粘附分子(hepatocyte cell adhesion molecule,hepaCAM)表达,协同hepaCAM抑制前列腺癌(prostate cancer,PCa)细胞生长。方法:不同浓度帕比司他作用于体外培养的PC3细胞,首先采用MTT法检测帕比司他对细胞增殖的影响,RT-PCR和Western blot法检测hepaCAM、组蛋白去乙酰化酶(histone deacetylases, HDACs)以及乙酰化组蛋白H3 赖氨酸9(Ac-H3K9)的表达变化。接着用不同因素处理细胞,MTT法检测细胞增殖活性,流式细胞术检测细胞周期改变,RT-PCR和Western blot法检测细胞周期调节因子cyclinD1 和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的基因表达。结果:帕比司他抑制PC3细胞生长与作用浓度增加和作用时间呈正相关, hepaCAM mRNA、蛋白以及细胞核中Ac-H3K9表达随帕比司他浓度升高而增高,HDAC1、 HDAC3、 HDAC4 mRNA和蛋白的表达随浓度升高而降低;单独过表达hepaCAM腺病毒和单独使用帕比司他组PC3细胞生长明显受到抑制且随作用时间延长抑制率增加,两者联用更为明显,差异有统计学意义(P < 0.05);与单独hepaCAM 腺病毒组和帕比司他组相比,两者联用S期细胞比例明显增高,差异有统计学意义(P < 0.05),且可进一步下调cyclinD1、 PCNA mRNA和蛋白的表达,差异有统计学意义(P < 0.05)。结论:帕比司他可通过抑制HDACs活性,加强PCa PC3细胞组蛋白H3 N-端的赖氨酸残基乙酰化,逆转hepaCAM表达;hepaCAM腺病毒和帕比司他联用可通过阻滞细胞周期于S期协同抑制PC3 细胞生长,作用机制可能与下调cyclinD1 和PCNA 的表达有关。这对揭示抑癌基因hepaCAM在肿瘤缺失的原因及为将帕比司他应用于临床治疗肿瘤提供了科学支持。

关键词: 肝细胞粘附分子细胞生长前列腺癌    
Abstract:

Objective: To study the reversing effect of Panobinostat on the expression of tumor suppressor gene hepatocyte cell adhesion molecule (hepaCAM) and its synergistic inhibitory effect with hepaCAM on the growth of prostate cancer (PCa) cells. Methods: PC3 cells cultured in vitro were treated with Panobinostat at different concentrations and the effect of Panobinostat on cell proliferation was detected by MTT assay, followed by the expression changes of hepaCAM, histone deacetylase (HDACs), and the acetylation of lys9 of histone H3 (Ac-H3K9) detected by RT-PCR and Western blot. Then after the cells were treated with different factors, cell proliferation activity was detected by MTT assay, cell cycle change was detected by flow cytometry, and gene expressions of cell cycle regulating factors CyclinD1 and proliferating cell nuclear antigen (PCNA) were detected by RT-PCR and Western blot. Results: The inhibitory effect of Panobinostat on the growth of PC3 cells was positively correlated to its concentration and duration. The expression levels of hepaCAM mRNA, its protein, and intranuclear Ac-H3K9 protein were increased, while that of both mRNA and protein of HDAC1, HDAC3, and HDAC4 were decreased when the concentration of Panobinostat increased; Cell growth was significantly inhibited in both the adenovirus-hepaCAM adenovirus alone group and the Panobinostat alone group, with an inhibition rate increased along with the prolonged action time. This inhibition became even particularly noticeable when the two were combined, with a difference of statistical significance (P < 0.05); the percentage of cells in S phase was significantly higher by the combined treatment compared with ad-hepaCAM alone and Panobinostat alone, respectively, with statistically significant differences (P < 0.05). This combination could further downregulate the mRNA and protein expressions of cyclinD1 and PCNA, and the difference was statistically significant (P < 0.05).Conclusion: Panobinostat may enhance the acetylation of lys9 of histone 3 and reverse the hepaCAM expression through its inhibitory effect on HDACs activity in PCa PC3 cells; hepaCAM-expressed adenovirus combined with Panobinostat may synergistically inhibit the growth of PC3 cells, via a potential mechanism associated with the down-regulation of the expression of CyclinD1 and PCNA. This reveals the reasons of hepaCAM deficiency in tumors and provides scientific support for the application of Panobinostat in clinical therapy.

Key words: Prostate cancer    HepaCAM    Cell growth
收稿日期: 2016-03-10 出版日期: 2016-06-25
ZTFLH:  R737.25  
基金资助:

国家自然科学基金(81072086)资助项目

通讯作者: 罗春丽     E-mail: luochunli79@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈娥, 欧俐苹, 唐敏, 刘南京, 吴小候, 罗春丽. 帕比司他逆转前列腺癌细胞hepaCAM基因表达机制研究[J]. 中国生物工程杂志, 2016, 36(6): 9-17.

CHEN Er, OU Li-ping, TANG Min, LIU Nan-jing, WU Xiao-hou, LUO Chun-li. The Mechanisms of Panobinostat Reversing HepaCAM Gene Expression in Prostate Cancer. China Biotechnology, 2016, 36(6): 9-17.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160602        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I6/9

[1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2015. Cancer Journal for Clinicians, 2015, 65(1):5-29.
[2] 宋琳衍.我国前列腺癌的诊断与治疗最新近况.中国医药指南,2012,10(36):50-52. Song L Y. The latest status of the diagnosis and treatment of prostate cancer. Guide of China Medicine,2012,10(36):50-52.
[3] Heidenreich A, Aus G, Bolla M, et al. EAU guidelines on prostate cancer. Eur Urol, 2008, 53(1):68-80.
[4] Moh M C,Lee L H,Shen S, et al. Coloning and characterization of hepaCAM,a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma.J Hepatol,2005,42(6):833-841.
[5] Song X, Wang Y, Du H, et al. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer. The Prostate, 2014, 74(10):1023-1033.
[6] Cheng T, Grasse L, Shah J, et al. Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma. Drugs of Today, 2015, 51(8):491-504.
[7] Tessarz P, Santos-Rosa H, Robson S C, et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 2014, 505(7484):564-568.
[8] 王晓荣,杨雪,王胤,等. 5-氮杂胞嘧啶核苷联合hepaCAM腺病毒通过抑制p-AKT诱导膀胱癌细胞T24凋亡. 重庆医科大学学报,2014,39(06):762-767. Wang X R, Yang X, Wang Y, et al. Inducing apoptosis of bladder cancer cell T24 by 5-azacytidine combined with adenovirus-hepaCAM via inhibiting p-AKT. Journal of Chongqing Medical University,2014,39(06):762-767.
[9] Wang Q, Luo C, Wu X, et al. hepaCAM and p-mTOR closely correlate in bladder transitional cell carcinoma and hepaCAM expression inhibits proliferation via an AMPK/mTOR dependent pathway in human bladder cancer cells. The Journal of Urology,2013,190(5):1912-1918.
[10] Jiang X L, Zhang Y, Tan B, et al. Renal tumor-derived exosomes inhibit hepaCAM expression of renal carcinoma cells in a p-AKT-dependent manner. Neoplasma, 2014,61(4):416-423.
[11] Pan C, Wu X, Luo C, et al. Exon 2 methylation inhibits hepaCAM expression in transitional cell carcinoma of the bladder. Urologia Internationalis, 2010, 85(3):347-354.
[12] Tao J, Liu Q, Wu X, et al. Identification of hypermethylation in hepatocyte cell adhesion molecule gene promoter region in bladder carcinoma. International Journal of Medical Sciences, 2013, 10(13):1860-1867.
[13] Dawson M A, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1):12-27.
[14] Seiler R, Thalmann G N, Rotzer D, et al. CCND1/CyclinD1 status in metastasizing bladder cancer: a prognosticator and predictor of chemotherapeutic response. Modern Pathology, 2014, 27(1):87-95.
[15] Nguyen H D, Bielinsky A K. HDM2 ERKs PCNA. The Journal of Cell Biology, 2010,190(4):487-489.

[1] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[2] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[3] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[4] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[5] 盛彬, 杨帆, 孙心旖, 陈瑶, 李莉, 杨建一, 杜圣家, 刘铭. GPRC6A过表达前列腺癌细胞株构建及EMT相关研究[J]. 中国生物工程杂志, 2017, 37(3): 18-26.
[6] 曹荣月, 俞敏霞, 张昕黎, 李曼曼, 苗梓韬, 金亮. VEGFⅡ/GRP融合蛋白的构建、表达、纯化及其抗小鼠RM-1前列腺癌的作用研究[J]. 中国生物工程杂志, 2016, 36(8): 9-15.
[7] 龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.
[8] 邓春平, 杨波, 梅雄, 郑赞顺, 曲伟. 重组碱性成纤维细胞生长因子游离巯基的测定分析[J]. 中国生物工程杂志, 2016, 36(6): 76-80.
[9] 王小花, 李玉婷, 刘亚威, 桂金秋, 周晓杭, 袁晓环, 初彦辉, 刘海峰. 突变型人HGF(tvNK1)对CCl4诱导的大鼠肝纤维化的影响[J]. 中国生物工程杂志, 2016, 36(6): 18-23.
[10] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[11] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[12] 易善勇, 杨晶, 官丽莉, 王艳芳, 黄建, 王立勇, 李海燕, 李校堃, 姜潮. 成纤维细胞生长因子9(FGF9)的研究进展[J]. 中国生物工程杂志, 2015, 35(7): 94-101.
[13] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[14] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[15] 赵海洋, 王泽, 黄鹏煌, 田海山, 李校堃, 杨树林. rhKGF2-EGFP的融合表达及醇脂质体的制备[J]. 中国生物工程杂志, 2014, 34(10): 22-27.