Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (3): 18-26    DOI: 10.13523/j.cb.20170303
研究报告     
GPRC6A过表达前列腺癌细胞株构建及EMT相关研究
盛彬1, 杨帆2, 孙心旖1, 陈瑶1, 李莉1, 杨建一1, 杜圣家1, 刘铭1
1. 山西医科大学基础医学院 太原 030001;
2. 北京协和医学院研究生院 北京 100005
Construction of the Stable Prostate Cancer Cell Lines Overexpress GPRC6A and EMT Study
SHENG Bin1, YANG Fan2, SUN Xin-yi1, CHEN Yao1, LI Li1, YANG Jian-yi1, DU Sheng-jia1, LIU Ming1
1. School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China;
2. Peking Union Medical College and Chinese Academy of Medical Sciences, Graduate School, Beijing 100005, China
 全文: PDF(1984 KB)   HTML
摘要:

目的:构建GPRC6A基因过表达的前列腺癌LncapC4-2细胞株,检测细胞迁移和侵袭能力改变及EMT相关基因表达,为研究GPRC6A介导的EMT在前列腺癌发生发展过程中的作用奠定基础。方法:构建过表达GPRC6A的慢病毒载体pCDH-GPRC6A,人胚肾293T细胞包被病毒并感染LncapC4-2细胞株,Puromycin筛选获得稳定过表达GPRC6A的细胞株。RT-PCR和Western blot验证细胞GPRC6A的过表达情况。划痕和transwell实验检测细胞迁移和侵袭能力,qPCR检测EMT相关基因表达。结果:成功构建GPRC6A表达的慢病毒载体,RT-PCR和Western blot检测LncapC4-2 GPRC6A过表达细胞株中GPRC6A的mRNA和蛋白质表达增高,与对照相比较,在过表达GPRC6A的LncapC4-2细胞中,细胞迁移和侵袭能力增强,并且EMT相关基因E-cadherin表达降低而SNAIL表达增高。结论:成功构建过表达的GPRC6A的前列腺癌细胞株,肿瘤细胞中的GPRC6A可能通过增强细胞迁移和侵袭能力并促进细胞EMT而参与前列腺癌发生发展过程。

关键词: 前列腺癌上皮间质转化GPRC6A    
Abstract:

Objective:To construct the prostate cancer cell line LncapC4-2 that overexpress GPRC6A gene, detect the cell migration and invasion abilities and the expression of EMT related genes, thus to establish the basis of exploring the role of EMT induced by GPRC6A in prostate cancer progression. Methods:The GPRC6A overexpression lentivirus vector pCDH-GPRC6A was constructed, The lentivirus were packaged using human embryonic kidney 293T cells and LncapC4-2 cell line was infected, and GPRC6A stably overexpressing cell line was screened using puromycin. RT-qPCR and Western blot methods were used to verify the overexpression of GPRC6A in the cell line, scratches and transwell cell migration assay were used to test the cell migration and invasion abilities and QPCR was used to detect the expressions of EMT-associated genes. Results:The lentivirus vector pCDH-GPRC6A was constructed successfully. In GPRC6A overexpression Lncap C4-2 cells, the GPRC6A expression was increased in mRNA and protein levels detected by using RT-PCR and Western blot methods. The cell migration and invasion abilities were higher in GPRC6A overexpression Lncap C4-2 cells than those in control cells. The expressions of EMT-associated gene E-cadherin and SNAIL were reduced and increased, respectively, in GPRC6A overexpression LncapC4-2 cells. Conclusion:The prostate cancer cell line LncapC4-2 that stably overexpress GPRC6A has been constructed successfully. GPRC6A maybe involves in the progression of prostate cancer by enhancing the abilities of cell migration and invasion, and promoting EMT in cancer cells.

Key words: GPRC6A    EMT    Prostate cancer
收稿日期: 2016-09-29 出版日期: 2017-03-25
ZTFLH:  Q813  
基金资助:

国家青年科学基金(81302220),山西省青年科学基金(2014021037-1),山西医科大学博士启动基金(B03201204)资助项目

通讯作者: 刘铭     E-mail: lium0421@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

盛彬, 杨帆, 孙心旖, 陈瑶, 李莉, 杨建一, 杜圣家, 刘铭. GPRC6A过表达前列腺癌细胞株构建及EMT相关研究[J]. 中国生物工程杂志, 2017, 37(3): 18-26.

SHENG Bin, YANG Fan, SUN Xin-yi, CHEN Yao, LI Li, YANG Jian-yi, DU Sheng-jia, LIU Ming. Construction of the Stable Prostate Cancer Cell Lines Overexpress GPRC6A and EMT Study. China Biotechnology, 2017, 37(3): 18-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170303        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I3/18

[1] 齐金蕾, 王黎君, 周脉耕,等. 1990-2013年中国男性前列腺癌疾病负担分析. 中华流行病学杂志, 2016, 37(6):778-782. Qi J L, Wang L J, Zhou M G, et al. Disease burden of prostate cancer among men in China, from 1990 to 2013. Chinese Journal of Epidemiology, 2016,37(6):778-782.
[2] Wong M C, Goggins W B, Wang H H, et al. Global incidence and mortality for prostate cancer:analysis of temporal patterns and trends in 36 countries. Eur Urol, 2016, 70(5):862-874.
[3] Bergstrom S H, Rudolfsson S H, Bergh A. Rat prostate tumor cells progress in the bone microenvironment to a highly aggressive phenotype. Neoplasia, 2016, 18(3):152-161.
[4] Wellendorph P, Brauner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene, 2004, 335(1):37-46.
[5] Clemmensen C, Smajilovic S, Wellendorph P, et al. The GPCR, class C, group 6, subtype A (GPRC6A) receptor:from cloning to physiological function. Br J Pharmacol, 2014, 171(5):1129-1141.
[6] Bolender D L, Markwald R R. Epithelial-mesenchymal transformation in chick atrioventricular cushion morphogenesis. Scan Electron Microsc, 1979, 3(3):313-321.
[7] Boyer B, Valles A M, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol, 2000, 60(8):1091-1099.
[8] Hanahan D, Weinberg R A. Hallmarks of cancer:the next generation. Cell, 2011, 144(5):646-674.
[9] Gonzalez R S, Huh W J, Cates J M, et al. Micropapillary colorectal carcinoma clinical, pathologic, and molecular properties, including evidence of epithelial-mesenchymal transition. Histopathology, 2016,70(2):223-231.
[10] Takata R, Akamatsu S, Kubo M, et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet, 2010, 42(9):751-754.
[11] Lindström S, Schumacher F R, Campa D, et al. Replication of five prostate cancer loci identified in an Asian population——results from the NCI breast and prostate cancer cohort consortium (BPC3). Cancer Epidemiol Biomarkers Prev, 2012, 21(1):212-216.
[12] Wang M, Liu F, Hsing A W, et al. Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians:a case-control study in the ChinaPCa consortium. Carcinogenesis, 2012, 33(2):356-360.
[13] Pi M, Quarles L D. GPRC6A regulates prostate cancer progression. Prostate, 2012, 72(4):399-409.
[14] 刘铭.中国北方人群前列腺癌风险位点识别和GPRC6A基因功能的研究.北京:北京协和医学院,2012. Liu M.Identification of prostate cancer risk SNPs in northern Chinese men and the functional study of GPRC6A gene. Beijing:Peking Union Medical College and Chinese Academy of Medical Sciences, 2012.
[15] Park J C, Eisenberger M A. Advances in the treatment of metastatic prostate cancer. Mayo Clin Proc, 2015, 90(12):1719-1733.
[16] Christiansen B, Hansen K B, Wellendorph P, et al. Pharmacological characterization of mouse GPRC6A, an L-alpha-amino-acid receptor modulated by divalent cations. Br J Pharmacol, 2007, 150(6):798-807.
[17] Pi M, Faber P, Ekema G, et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem, 2005, 280(48):40201-40209.
[18] Wang C, Liu Y, Cao J M. G protein-coupled receptors:extranuclear mediators for the non-genomic actions of steroids. Int J Mol Sci, 2014, 15(9):15412-15425.
[19] Gandalovicova A, Vomastek T, Rosel D, et al. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget, 2016, 7(18):25022-25049.
[20] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
[21] Lee J Y, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci, 2016,73(24):4643-4660.
[22] Giannelli G, Koudelkova P, Dituri F, et al. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol, 2016,65(4):798-808.
[23] Claperon A, Mergey M, Nguyen H T, et al. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. J Hepatol, 2014, 61(2):325-332.
[24] Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype. Nat Rev Cancer, 2007, 7(6):415-428.
[25] Zhou B, Zhan H, Tin L, et al. TUFT1 regulates metastasis of pancreatic cancer through HIF1-Snail pathway induced epithelial-mesenchymal transition. Cancer Lett, 2016, 382(1):11-20.

[1] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[2] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[3] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[4] 赵燕, 郝燕妮, 刘南京, 李婷, 吴小候, 罗春丽. miR-145通过下调PLCε抑制膀胱癌EMT和迁移及其机制研究[J]. 中国生物工程杂志, 2017, 37(3): 27-36.
[5] 李爱芳, 谷月, 李雪茹, 孙晖, 查何, 谢佳卿, 赵佳丽, 周兰. 促宫颈癌细胞增殖、迁移及其可能机制研究[J]. 中国生物工程杂志, 2017, 37(2): 8-14.
[6] 曹荣月, 俞敏霞, 张昕黎, 李曼曼, 苗梓韬, 金亮. VEGFⅡ/GRP融合蛋白的构建、表达、纯化及其抗小鼠RM-1前列腺癌的作用研究[J]. 中国生物工程杂志, 2016, 36(8): 9-15.
[7] 陈娥, 欧俐苹, 唐敏, 刘南京, 吴小候, 罗春丽. 帕比司他逆转前列腺癌细胞hepaCAM基因表达机制研究[J]. 中国生物工程杂志, 2016, 36(6): 9-17.
[8] 万里川, 周建光, 李杰之, 孙玉龙, 刘春丽. 小鼠PC-1蛋白兔多克隆抗体的制备及初步应用[J]. 中国生物工程杂志, 2003, 23(12): 95-98.
[9] 刘建香, 刘丽, 刘立忠, 王颖, 谢宝树, 冷爱军, 苏旭, 刘树铮. PSP94融合蛋白在大肠杆菌中的表达及其抗前列腺癌活性分析[J]. 中国生物工程杂志, 2000, 20(1): 8-12.
[10] 睿中. Cetus公司推出两项诊断试验[J]. 中国生物工程杂志, 1986, 6(3): 73-73.