Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 88-96    DOI: 10.13523/j.cb.20140814
综述     
大肠杆菌无痕重组的策略与应用
刘陆罡1, 纪晓俊1, 沈梦秋1, 童颖佳1, 黄和1,2
1. 南京工业大学生物与制药工程学院 南京 211816;
2. 南京工业大学材料化学工程国家重点实验室 南京 210009
Red-mediated Scarless Recombination:Strategies and Applications
LIU Lu-gang1, JI Xiao-jun1, SHEN Meng-qiu1, TONG Ying-jia1, HUANG He1,2
1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
 全文: PDF(872 KB)   HTML
摘要:

Red同源重组技术发展迅速,已经广泛应用于大肠杆菌基因的敲除、插入与替换。与传统的DNA有痕重组技术相比,基于Red重组原理的DNA无痕重组技术,能够更为精确、快速、高效地修饰大肠杆菌基因组中的目标基因,且在基因组中不残留任何外源片段,因此不会影响后续的基因操作与基因表达。从Red同源重组的原理出发,简要综述了近年来在大肠杆菌中广泛使用的无痕重组技术的原理及操作策略,并对比分析了各种方法的优势与不足;同时,还介绍了DNA无痕重组技术在大肠杆菌基因修饰中的应用情况。

关键词: Red重组无痕重组策略应用    
Abstract:

Red recombination technology is developing rapidly, and has been widely used in Escherichia coli gene modification, such as deletions, insertions and substitutions. Compared with the traditional scarred recombination, the scarless recombination technology based on Red recombination is able to make more precise, rapid and efficient modification of targeted genes without the introduction of any exogenous sequences in the genome. From the basic mechanism of Red recombination,the principles and operation strategies about scarless recombination for Escherichia coli in recent years were reviewed, and also the advantages and disadvantages were analyzed. Finally, the applications of scarless recombination technology were introduced.

Key words: Red recombination    Scarless recombination    Strategies    Applications
收稿日期: 2014-05-04 出版日期: 2014-08-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金(21376002)、国家重点基础研究发展计划(2011CBA00800)、国家“863”计划(2011AA02A207)、江苏高校优势学科建设工程资助项目

通讯作者: 纪晓俊,E-mail:xiaojunji@njtech.edu.cn     E-mail: xiaojunji@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘陆罡, 纪晓俊, 沈梦秋, 童颖佳, 黄和. 大肠杆菌无痕重组的策略与应用[J]. 中国生物工程杂志, 2014, 34(8): 88-96.

LIU Lu-gang, JI Xiao-jun, SHEN Meng-qiu, TONG Ying-jia, HUANG He. Red-mediated Scarless Recombination:Strategies and Applications. China Biotechnology, 2014, 34(8): 88-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140814        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/88


[1] Bailey J E. Toward a science of metabolic engineering.Science, 1991, 252(5013): 1668-1675.

[2] Yu B J, Kang K H, Lee J H, et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Research, 2008, 36(14): e84.

[3] Muyrers J P P, Zhang Y, Testa G, et al. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 1999, 27(6): 1555-1557.

[4] Zhang Y, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 2000, 18(12): 1314-1317.

[5] Poteete A R. What makes the bacteriophage λ Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiology Letters, 2001, 201(1): 9-14.

[6] Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nature Reviews Genetics, 2001, 2(10): 769-779.

[7] Yu D, Ellis H M, Lee E C, et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 5978-5983.

[8] Ellis H M, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(12): 6742-6746.

[9] Mythili E, Kumar K A, Muniyappa K. Characterization of the DNA-binding domain of β protein, a component of phage λ Red-pathway, by UV catalyzed cross-linking. Gene, 1996, 182(1): 81-87.

[10] Karakousis G, Ye N, Li Z, et al. The beta protein of phage λ binds preferentially to an intermediate in DNA renaturation. Journal of Molecular Biology, 1998, 276(4): 721-731.

[11] Murphy K C. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. Journal of Bacteriology, 1991, 173(18): 5808-5821.

[12] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.

[13] Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. Journal of Molecular Biology, 2006, 355(4): 619-627.

[14] Tischer B K, von Einem J, Kaufer B, et al. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191.

[15] Haldimann A, Wanner B L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. Journal of Bacteriology, 2001, 183(21): 6384-6393.

[16] Chiang C J, Chen PT, Chao Y P. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnology and Bioengineering, 2008, 101(5): 985-995.

[17] St-Pierre F, Cui L, Priest D G, et al. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537-541.

[18] Lalioti M D, Heath J K. A new method for generating point mutations in bacterial artificial chromosomes by homologous recombination in Escherichia coli. Nucleic Acids Research, 2001, 29(3): e14.

[19] Zhang X, Jantama K, Moore J C, et al. Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355-366.

[20] Li X, Thomason L C, Sawitzke J A, et al. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli. Nucleic Acids Research, 2013, 41(22): e204.

[21] Sawitzke J A, Thomason L C, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods in Enzymology, 2007, 421: 171-199.

[22] Pelicic V, Reyrat J M, Gicquel B. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. Journal of Bacteriology, 1996, 178(4): 1197-1199.

[23] Donnenberg M S, Kaper J B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infection and Immunity, 1991, 59(12): 4310-4317.

[24] Warming S, Costantino N, Jenkins N A, et al. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Research, 2005, 33(4):e36.

[25] Wong Q N, Ng V C, Lin M C, et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Research, 2005, 33(6): e59.

[26] DeVito J A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Research, 2008, 36(1): e4.

[27] Jamsai D, Orford M, Nefedov M, et al. Targeted modification of a human β-globin locus BAC clone using GET Recombination and an I-SceI counterselection cassette. Genomics, 2003, 82(1): 68-77.

[28] Herring C D, Glasner J D, Blattner F R. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 2003, 311: 153-163.

[29] Lee D J, Bingle L E H, Heurlier K, et al. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiology, 2009, 9(1): 252.

[30] Carroll D. Genome engineering with targetable nucleases. Annual Review of Biochemistry, 2014, 83(1): 14.1-14.19.

[31] Tischer B K, von Einem J, Kaufer B, et al. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques, 2006, 40(2): 191.

[32] Kolisnychenko V, Plunkett G, Herring C D, et al. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640-647.

[33] Fehér T, Karcagi I, Györfy Z, et al. Scarless engineering of the Escherichia coli genome. Microbial Gene Essentiality: Protocols and Bioinformatics. New Jersey: Humana Press, 2008. 251-259.

[34] 方宏清, 吴涛, 孙旭等. 一种工程菌及其在生产紫槐-4, 11-二烯中的应用. CN 102978147A, 2013. Fang H Q, Wu T, Sun X, et al. An engineered bacteria and its applications in amorpha-4, 11-diene production. CN 102978147A, 2013.

[35] Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92.

[36] Mizoguchi H, Mori H, Fujio T. Escherichia coli minimum genome factory. Biotechnology and Applied Biochemistry, 2007, 46(3): 157-167.

[37] Pósfai G, Plunkett G, Fehér T, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044-1046.

[38] Hashimoto M, Ichimura T, Mizoguchi H, et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Molecular Microbiology, 2005, 55(1): 137-149.

[39] Mizoguchi H, Sawano Y, Kato J, et al. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Research, 2008, 15(5): 277-284.

[40] Lee J H, Sung B H, Kim M S, et al. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microbial Cell Factories, 2009, 8(2): 2.

[41] Hirokawa Y, Kawano H, Tanaka-Masuda K, et al. Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. Journal of Bioscience and Bioengineering, 2013, 116(1): 52-58.

[42] Wang H H, Isaacs F J, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.

[43] Isaacs F J, Carr PA, Wang H H, et al. Precise manipulation of chromosomes in vivo enablesgenome-wide codon replacement. Science, 2011, 333(6040): 348-353.

[44] Warner J R, Reeder PJ, Karimpour-Fard A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nature Biotechnology, 2010, 28(8): 856-862.

[45] Jantama K, Zhang X, Moore J C, et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881-893.

[46] Shi A, Zhu X, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metabolic Engineering, 2013, 16: 1-10.

[47] Zhao J, Liu Y, Li Q, et al. Modulation of isoprenoid gene expression with multiple regulatory parts for improved beta-carotene production. Chinese Journal of Biotechnology, 2013, 29(1): 41-55.

[48] Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metabolic Engineering, 2013, 17: 42-50.

[49] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678-12683.

[50] Braatsch S, Helmark S, Kranz H, et al. Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine tuning. BioTechniques, 2008, 45(3): 335-337.

[51] Sandoval N R, Kim J Y, Glebes T Y, et al. Strategy for directing combinatorial genome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10540-10545.

[52] 戴冠苹, 孙涛, 苗良田等. RBS文库调控重组大肠杆菌β-胡萝素合成途径关键基因提高β-胡萝卜素合成能力. 生物工程学报, 2014, 30(6): 1-11. Dai G P, Sun T, Miao L T, et al. Modulating expression of key genes within β-carotene synthetic pathway in recombinant Escherichia coli with RBS library to improve β-carotene production. Chinese Journal of Biotechnology, 2012, 109(26): 10540-10545.

[1] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[2] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[6] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[7] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[8] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[9] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[10] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[11] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[12] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[13] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[14] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[15] 王静,许鑫,王雪雨,姚伦广,阚云超,冀君. 环介导等温扩增技术检测食品安全的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 84-91.