Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 90-96    DOI: 10.13523/j.cb.20191011
综述     
人源抗体制备及临床应用研究进展 *
陈秀秀1,2,吴成林2,周丽君1,2,**()
1 安徽医科大学海军临床学院 北京 100048
2 中国人民解放军总医院 第六医学中心中心实验室 北京 100048
Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies
CHEN Xiu-xiu1,2,WU Cheng-lin2,ZHOU Li-jun1,2,**()
1 Department of Naval Clinical Medicine, Anhui Medical University, Beijing 100048, China
2 Central Laboratory of the Sixth Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100048, China;
 全文: PDF(454 KB)   HTML
摘要:

与常规治疗药物相比,抗体药物具有靶向性强、特异性好等优点,其作为一类重要的治疗性药物,近年来在临床中的应用逐渐增多,为疾病的治疗提供了新的选择,应用范围逐渐从肿瘤、自身免疫性疾病及慢性炎症扩展到心血管和感染性等疾病中。人源抗体的全部结构是由人类抗体基因所编码的,因此避免了异种蛋白长期应用引起的不良反应,加之人源抗体制备技术的不断发展完善,使其逐渐成为治疗性抗体研发的首要选择。综述了近年来治疗性人源抗体的主要制备技术及其在临床中应用的最新进展,同时探讨了人源抗体制备技术的不足之处,以期为人源抗体的发展提供借鉴和思路。

关键词: 人源抗体噬菌体展示技术转基因鼠技术临床应用    
Abstract:

As important therapeutic drugs, human antibodies have been widely applied in clinical therapy in recent years. At present, the range of clinical application has gradually expanded from tumors, autoimmune diseases and chronic inflammation to cardiovascular diseases and infection, Compared with conventional therapy, the advantages of antibody therapy are specificity and high efficiency, which provides a new choice for the treatment of diseases. The entire structure of the human antibody is encoded by the human antibody gene, the human antibody gradually becomes the first choice for the development of therapeutic antibodies for avoiding the adverse reactions caused by the long-term application of the heterologous protein. The main preparation techniques and clinical application progress of therapeutic human antibodies are reviewed. At the same time, the disadvantages of human antibody preparation technology are also discussed to provide references and ideas for the development of human antibodies.

Key words: Human antibody    Phage display technology    Transgenic mouse technology    Clinical application
收稿日期: 2019-01-30 出版日期: 2019-11-12
ZTFLH:  R392  
基金资助: * 国家自然科学基金资助项目(31470897、81602457)
通讯作者: 周丽君     E-mail: hzzhoulj@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈秀秀
吴成林
周丽君

引用本文:

陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.

CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies. China Biotechnology, 2019, 39(10): 90-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191011        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/90

名称 形式 制备方法 靶点 所治疾病 上市时间
Adalimumab IgG1κ 噬菌体抗体库 TNF-α 类风湿性关节炎、克罗恩病 2002
Panitumumab IgG2κ 转基因鼠 EGFR 结直肠癌 2006
Golimumab IgG1κ 转基因鼠 TNF-α 类风湿性关节炎、溃疡性结肠炎 2009
Ustekinumab IgG1κ 转基因鼠 IL-12;IL-23 银屑病、银屑病关节炎、克罗恩病 2009
Canakinumab IgG1κ 转基因鼠 IL-1β 周期性发热、幼年特发性关节炎 2009
Ofatumumab IgG1κ 转基因鼠 CD20 慢性淋巴细胞白血病 2009
Denosumab IgG2κ 转基因鼠 RANK-L 骨质疏松症、实体瘤骨转移 2010
Belimumab IgG1λ 噬菌体抗体库 BAFF 系统性红斑狼疮 2011
Ipilimumab IgG1κ 转基因鼠 CTLA4 黑色素瘤 2011
Raxibacumab IgG1λ 噬菌体抗体库 炭疽杆菌P84抗原 吸入性炭疽 2012
Nivolumab IgG4κ 转基因鼠 PD1 黑色素瘤、非小细胞肺癌、霍奇金淋巴瘤 2014
Daratumumab IgG1κ 转基因鼠 CD38 多发性骨髓瘤 2015
Necitumumab IgG1κ 噬菌体抗体库 EGFR 鳞状非小细胞肺癌 2015
Alirocumab IgG1λ 转基因鼠 PCSK9 高胆固醇血症 2015
Evolocumab IgG2λ 转基因鼠 PCSK9 高胆固醇血症 2015
Olaratumab IgG1κ 转基因鼠 PDGFRα 软组织肉瘤 2016
Ramucirumab IgG1κ 噬菌体抗体库 VEGFR2 晚期胃癌、胃食管结合部腺癌 2014
Secukinumab IgG1κ 转基因鼠 IL-17A 斑块状银屑病、强直性脊柱炎 2015
Bezlotoxumab IgG2κ 转基因鼠 梭状芽孢杆菌毒素B 预防艰难梭菌感染复发 2016
Dupilumab IgG4κ 转基因鼠 IL-4Rα 特应性皮炎 2017
Durvalumab IgG1κ 转基因鼠 PD-L1 尿路上皮癌 2017
Sarilumab IgG1κ 转基因鼠 IL-6R 类风湿性关节炎 2017
Avelumab IgG1κ 噬菌体抗体库 PD-L1 默克细胞癌、尿路上皮癌 2017
Guselkumab IgG1λ 噬菌体抗体库 IL-23 中重度斑块状银屑病 2017
Brodalumab IgG1κ 转基因鼠 IL-17RA 中重度斑块状银屑病 2017
Erenumab IgG2λ 转基因鼠 CGRPR 预防成人偏头痛 2018
Burosumab IgG1κ 转基因鼠 FGF23 X连锁低磷血症 2018
Cemiplimab IgG4κ 转基因鼠 PD-1 皮肤鳞状细胞癌、局部晚期皮肤鳞状细胞癌 2018
Lanadelumab IgG1κ 噬菌体抗体库 Plasma kallikrein 遗传性血管性水肿 2018
Emapalumab IgG1λ 转基因鼠 IFNγ 原发性噬血细胞性淋巴组织细胞增多症 2018
表1  截至2018年美国FDA批准上市的人源抗体[2, 13-17]
[1] Frenzel A, Schirrmann T, Hust M . Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016,8(7):1177-1194.
[2] Carter P J, Lazar G A . Next generation antibody drugs:pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov, 2018,17(3):197-223.
[3] Smith G P . Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science, 1985,228(4705):1315-1317.
[4] McCafferty J, Griffiths A D, Winter G , et al. Phage antibodies:filamentous phage displaying antibody variable domains. Nature, 1990,348(6301):552-554.
[5] de Haard H J, van Neer N, Reurs A , et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem, 1999,274(26):18218-18230.
[6] Brezski R J, Georgiou G . Immunoglobulin isotype knowledge and application to Fc engineering. Curr Opin Immunol, 2016,40:62-69.
[7] Rahbarnia L, Farajnia S, Babaei H , et al. Evolution of phage display technology: from discovery to application. J Drug Target, 2017,25(3):216-224.
[8] Lampreht T U, Horvat S , Cemazar M. transgenic mouse models in cancer research. Front Oncol, 2018,8:268.
[9] Bruggemann M, Caskey H M, Teale C , et al. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci USA, 1989,86(17):6709-6713.
[10] Lonberg N, Taylor L D, Harding F A , et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature, 1994,368(6474):856-859.
[11] Green L L, Hardy M C , Maynard-Currie C E , et al.Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet, 1994,7(1):13-21.
[12] Jakobovits A, Amado R G, Yang X , et al. From xenomouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol, 2007,25(10):1134-1143.
[13] Poole R M, Vaidya A . Ramucirumab:first global approval. Drugs, 2014,74(9):1047-1058.
doi: 10.1007/s40265-014-0244-2
[14] Shirley M . Olaratumab:first global approval. Drugs, 2017,77(1):107-112.
[15] Cemiplimab Approved for treatment of CSCC. Cancer Discov, 2018,8(12):F2.
[16] Busse P J, Farkas H, Banerji A , et al. Lanadelumab for the prophylactic treatment of hereditary angioedema with C1 inhibitor deficiency:a review of preclinical and phase i studies. Bio Drugs, 2019,33(1):33-43.
[17] Lounder D T ,Bin Q,de Min C,, et al.Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv, 2019,3(1):47-50.
[18] Citri A, Yarden Y . EGF-ERBB signalling:towards the systems level. Nat Rev Mol Cell Biol, 2006,7(7):505-516.
[19] Chua Y J, Cunningham D . Panitumumab. Drugs Today (Barc), 2006,42(11):711-719.
[20] Chen Q, Cheng M, Wang Z , et al. The efficacy and safety of panitumumab plus irrinotecan-based chemotherapy in the treatment of metastatic colorectal cancer: a meta-analysis. Medicine (Baltimore), 2016,95(50):e5284.
[21] AlDallal S M . Ofatumumab—a valid treatment option for chronic lymphocytic leukemia patients. Ther Clin Risk Manag, 2017,13:905-907.
[22] Barth M J, Mavis C, Czuczman M S , et al. Ofatumumab exhibits enhanced in vitro and in vivo activity compared to rituximab in preclinical models of mantle cell lymphoma. Clin Cancer Res, 2015,21(19):4391-4397.
[23] Palumbo A, Chanan-Khan A, Weisel K , et al. Daratumumab,bortezomib,and dexamethasone for multiple myeloma. N Engl J Med, 2016,375(8):754-766.
[24] Specenier P . Ipilimumab in melanoma. Expert Rev Anticancer Ther, 2016,16(8):811-826.
[25] Tsai K K, Zarzoso I, Daud A I . PD-1 and PD-L1 antibodies for melanoma. Hum Vaccin Immunother, 2014,10(11):3111-3116.
[26] Sharma P, Allison J P . The future of immune checkpoint therapy. Science, 2015,348(6230):56-61.
[27] Larkin J, Chiarion-Sileni V, Gonzalez R , et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med, 2015,373(1):23-34.
[28] Flamant M, Paul S, Roblin X . Golimumab for the treatment of ulcerative colitis. Expert Opin Biol Ther, 2017,17(7):879-886.
[29] Reich K, Armstrong A W, Foley P , et al. Efficacy and safety of guselkumab,an anti-interleukin-23 monoclonal antibody,compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment:Results from the phase III,double-blind,placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol, 2017,76(3):418-431.
[30] Alten R, Gram H, Joosten L A , et al. The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther, 2008,10(3):R67.
[31] Gram H . Preclinical characterization and clinical development of ILARIS(R) (canakinumab) for the treatment of autoinflammatory diseases. Curr Opin Chem Biol, 2016,32:1-9.
[32] Thompson P L, Nidorf S M . Anti-inflammatory therapy with canakinumab for atherosclerotic disease:lessons from the CANTOS trial. J Thorac Dis, 2018,10(2):695-698.
[33] Rondeau J M, Ramage P, Zurini M , et al. The molecular mode of action and species specificity of canakinumab,a human monoclonal antibody neutralizing IL-1beta. MAbs, 2015,7(6):1151-1160.
[34] Krause K, Tsianakas A, Wagner N , et al. Efficacy and safety of canakinumab in schnitzler syndrome:a multicenter randomized placebo-controlled study. J Allergy Clin Immunol, 2017,139(4):1311-1320.
[35] Jokinen E . Obesity and cardiovascular disease. Minerva Pediatr, 2015,67(1):25-32.
[36] Atanda A, Shapiro N L, Stubbings J , et al. Implementation of a new clinic-based, pharmacist-managed PCSK9 inhibitor consultation service. J Manag Care Spec Pharm, 2017,23(9):918-925.
[37] Horton J D, Cohen J C, Hobbs H H.PCSK9:a convertase that coordinates LDL catabolism. J Lipid Res, 2009,50 Suppl: S172-S177.
[38] Seidah N G, Awan Z, Chretien M , et al. PCSK9:a key modulator of cardiovascular health. Circ Res, 2014,114(6):1022-1036.
doi: 10.1161/CIRCRESAHA.114.301621
[39] Cannon C P, Cariou B, Blom D , et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins:the ODYSSEY COMBO II randomized controlled trial. Eur Heart J, 2015,36(19):1186-1194.
[40] Robinson J G, Farnier M, Krempf M , et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med, 2015,372(16):1489-1499.
[41] Ascenzi P, Visca P, Ippolito G , et al. Anthrax toxin:a tripartite lethal combination. FEBS Lett, 2002,531(3):384-388.
[42] Mazumdar S . Raxibacumab. MAbs, 2009,1(6):531-538.
[43] Migone T S, Subramanian G M, Zhong J , et al. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med, 2009,361(2):135-144.
[44] Kufel W D, Devanathan A S, Marx A H , et al. Bezlotoxumab:a novel agent for the prevention of recurrent clostridium difficile infection. Pharmacotherapy, 2017,37(10):1298-1308.
[45] Wilcox M H, Gerding D N, Poxton I R , et al. Bezlotoxumab for prevention of recurrent clostridium difficile infection. N Engl J Med, 2017,376(4):305-317.
[46] Markham A . Erenumab:first global approval. Drugs, 2018,78(11):1157-1161.
[47] Karsan N, Goadsby P J . Calcitonin gene-related peptide and migraine. Curr Opin Neurol, 2015,28(3):250-254.
[48] Eftekhari S, Salvatore C A, Johansson S , et al. Localization of CGRP,CGRP receptor, PACAP and glutamate in trigeminal ganglion.relation to the blood-brain barrier. Brain Res, 2015,1600:93-109.
[49] Schou W S, Ashina S, Amin F M , et al. Calcitonin gene-related peptide and pain:a systematic review. J Headache Pain, 2017,18(1):34.
[50] Tepper S, Ashina M, Reuter U , et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised,double-blind,placebo-controlled phase 2 trial. Lancet Neurol, 2017,16(6):425-434.
[51] Jain S, Yuan H, Spare N , et al. Erenumab in the treatment of migraine. Pain Manag, 2018,8(6):415-426.
[52] Lamb Y N . Burosumab:first global approval. Drugs, 2018,78(6):707-714.
[53] Zhang X, Imel E A, Ruppe M D , et al. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia. J Clin Pharmacol, 2016,56(2):176-185.
[54] Lamb Y N . Burosumab:first global approval. Drugs, 2018,78(6):707-714.
[55] Carpenter T O, Whyte M P, Imel E A , et al. Burosumab therapy in children with X-Linked hypophosphatemia. N Engl J Med, 2018,378(21):1987-1998.
[1] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[2] 刘一杰, 薛永常. 植物黄酮类化合物的研究进展[J]. 中国生物工程杂志, 2016, 36(9): 81-86.
[3] 王佃亮, 杜娟. 细胞药物的研发现状——细胞药物连载之三[J]. 中国生物工程杂志, 2016, 36(9): 126-133.
[4] 王佃亮. 细胞药物的临床应用——细胞药物连载之五[J]. 中国生物工程杂志, 2016, 36(12): 117-123.
[5] 汤文燕, 栾佐. 内皮祖细胞的生物学特性及其临床应用前景[J]. 中国生物工程杂志, 2016, 36(10): 86-93.
[6] 王佃亮. 组织工程的临床研究——组织工程连载之五[J]. 中国生物工程杂志, 2014, 34(10): 114-120.
[7] 王佃亮. 细胞移植治疗的临床应用及发展——细胞移植治疗连载之三[J]. 中国生物工程杂志, 2013, 33(10): 138-145.
[8] 袁丽, 戴和平. 用于筛选人工结合蛋白的骨架蛋白[J]. 中国生物工程杂志, 2013, 33(1): 95-103.
[9] 毛晓燕 乔玉玲 卢卫嘉 马瑞 赵红. 人源天然ScFv噬菌体抗体库的构建及鉴定[J]. 中国生物工程杂志, 2010, 30(05): 18-22.
[10] 于晓明,张维冰,张丽华,张玉奎. 利用氨甲蝶呤-琼脂糖凝胶进行噬菌体展示人肝脏cDNA文库筛选的方法研究[J]. 中国生物工程杂志, 2007, 27(10): 70-74.
[11] 黄慧贤,邱斌,吴晓萍,蔡绍晖,李校堃. 噬菌体展示技术筛选bFGF模拟短肽[J]. 中国生物工程杂志, 2006, 26(05): 7-10.
[12] 田媛, 胡宝成. 体内筛选技术在靶向治疗中的新进展[J]. 中国生物工程杂志, 2004, 24(11): 5-8.
[13] 王佃亮. 重组人溶菌酶研究进展[J]. 中国生物工程杂志, 2003, 23(9): 59-63.
[14] 沈林南, 魏东芝, 俞俊棠. 碱性成纤维细胞生长因子的研究进展[J]. 中国生物工程杂志, 1999, 19(1): 25-28.
[15] 邱信芳, 薛京伦. 基因治疗研究的现状和展望[J]. 中国生物工程杂志, 1995, 15(1): 18-21.