Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (7): 10-16    DOI: 10.13523/j.cb.20140702
研究报告     
钠离子通道β4亚基糖基化的初步研究
周婷婷1,2, 潘传涌2, 张建鹏2, 金慧英1
1. 南京军事医学研究所 南京 210002;
2. 第二军医大学生物化学与分子生物学教研室 上海 200433
The Research of the Glycosylation of Sodium Channel β4 Subunit
ZHOU Ting-ting1,2, PAN Chuan-yong2, ZHANG Jian-peng2, JIN Hui-ying1
1. East-China Institute for Medical Biotechniques, Nanjing 210002, China;
2. Department of Biochemistry & Molecular Biology, Second Military Medical University, Shanghai 200433, China
 全文: PDF(663 KB)   HTML
摘要:

异常表达的糖蛋白与PD等多种神经退行性疾病有关。糖蛋白组学研究发现,电压门控钠离子通道β4亚基在PD病人脑组织中表达明显增加。为了深入探索β4亚基及其糖链在帕金森发生发展中的作用,采用PD转基因鼠对其表达进行验证,对其潜在的糖基化位点进行定点突变,构建重组表达质粒。结果发现,在新生PD转基因鼠和野生成鼠脑组织中有~38kDa蛋白条带表达,而在新生野生鼠脑组织中不表达;用PNGase F酶处理去除糖链后,~38kDa蛋白条带变成迁移速递更快的较小分子量条带,说明β4亚基是高度糖基化的蛋白,并且其糖基化与生长发育有关。将突变重组质粒转入HEK-293细胞和小鼠神经瘤细胞Neuro2A中表达,结果发现突变型质粒分子量明显低于野生型。为研究β4亚基及其糖链的功能提供了一定的实验数据并打下了基础。

关键词: 电压门控钠离子通道β4亚基糖基化帕金森病    
Abstract:

Aberrant protein glycosylation plays major roles in neurodegenerative disease, including PD. Glycoproteomics showed that the glycosylation of sodium channel β4 was significantly increased in human brain tissue. β4-specific antibodies reacted in immunoblot assays with ~38 kDa band from the membrane fractions isolated from neonatal PD transgenic mice but not expressed in the neonatal wild-type mice. The molecular weight of ~38 kDa immunoreactive protein is in close agreement with previously reported, suggesting heavy glycosylation of this protein in adult wild-type and neonatal PD transgenic brain tissues. Enzymatic deglycosylation of the membrane preparations converted the 38 kDa band into a faster migrating protein, which was consistent with heavy glycosylation of this protein. The glycosylated state of β4 was developmentally regulated and was altered in disease state. We also expressed β4-wild type and deglycosylated mutant β4-MUT plasmids in HEK-293 and Neuro2A cells. These results lay a foundation of studying β4 subunit in the pathogenesis of PD. Further studies will focus on the effects of the oligosaccharides on the sodium channel activities and neuritic degeneration.

Key words: Sodium channel β4 subunit    Glycosylation    Parkinson’s disease
收稿日期: 2013-06-26 出版日期: 2014-07-25
ZTFLH:  Q789  
通讯作者: 金慧英     E-mail: jhying2013@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周婷婷, 潘传涌, 张建鹏, 金慧英. 钠离子通道β4亚基糖基化的初步研究[J]. 中国生物工程杂志, 2014, 34(7): 10-16.

ZHOU Ting-ting, PAN Chuan-yong, ZHANG Jian-peng, JIN Hui-ying. The Research of the Glycosylation of Sodium Channel β4 Subunit. China Biotechnology, 2014, 34(7): 10-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140702        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I7/10


[1] Hann S R. Role of post-translational modifications in regulating c-Myc proteolysis, transcriptional activity and biological function. Semin Cancer Biol, 2006, 16: 288-302.

[2] Apweiler R, Hermjakob H, Sharon N, et al. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta, 1999, 1473: 4-8.

[3] Hagglund P,Bunkenborg, J, Elortza, F, et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res, 2004, 3: 556-566.

[4] Silveyra M X, Cuadrado-Corrales N, Marcos A, et al. Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem, 2006, 96: 97-104.

[5] Saez-Valero J, Fodero L R,Sjogren M, et al. Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer's disease. J Neurosci Res, 2003, 72: 520-526.

[6] Afonso-Oramas D, Cruz-Muros I, Abreu P, et al. Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiol Dis, 2009, 36: 494-508.

[7] Liu F, Zaidi T, Iqbal K, et al. Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Lett, 2002, 512: 101-106.

[8] Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family . Genome Blology, 2003, 4:1-7.

[9] Catterall W A. From Ionic Currents to Molecular Mechanisms:The Structure and Function of Voltage-Gated Sodium Channels . Neuron, 2000, 26:13-25.

[10] Aman, T K, Grieco-Calub, T M, Chen, C, et al .Regulation of persistent Na current by interaction between β subunits of voltage-gated Na channels . J Neurosci, 2009, 29:2027-2042.

[11] Yu F H, Westenbroek R E, Silos-Santiago I, et al. Sodium Channel β4, a New Disulfide-Linked Auxiliary Subunit with Similarity to β2 . J.Neurosci, 2003, 23: 7577-7585.

[12] Qu Y, Curtis R, Lawson D, et al. Differential Modulation of Sodium Channel Gating and Persistent Sodium Currents by the β1, β2 and β3 Subunits. Molecular and Cellular Neuroscience, 2001,18: 570-580.

[13] Oyama F, Miyazaki H, Sakamoto N, et al. Sodium channel beta4 subunit: down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice. J Neurochem, 2006, 98: 518-529.

[14] Miyazaki H, Oyama F, Wong H K, et al. BACE1 modulates filopodia-like protrusions induced by sodium channel beta4 subunit. Biochem Biophys Res Commun, 2007, 361: 43-48.

[15] Hwang H, Zhang J, Chung K A, et al. Glycoproteomics in neurodegenerative diseases. Mass Spectrom Rev, 29: 79-125.

[16] Tyrrell L, Renganathan M, Dib-Hajj S D, et al. Glycosylation alters steady-state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J Neurosci, 2001, 21: 9629-9637.

[17] Ngoh G A, Jones S P. New insights into metabolic signaling and cell survival: the role of beta-O-linkage of N-acetylglucosamine. J Pharmacol Exp Ther, 2008, 327: 602-609.

[18] Ngoh G A, Watson L J, Facundo H T, et al. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J Mol Cell Cardiol, 2008, 45: 313-325.

[19] Aman T K, Grieco-Calub T M, Chen C, et al. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels. J Neurosci, 2009, 29: 2027-2042.

[20] Zhao J, O’Leary M E, Chahine M, et al. Regulation of Na(v)1.6 and Na(v)1.8 peripheral nerve Na(+) channels by auxiliary beta-subunits. J Neurophysiol, 2011, 106: 608-619.

[21] Zhan Z N, Li Q, Liu C, et al. The voltage-gated Na+ channel Nav1.8 contains an ER-retention/retrieval signal antagonized by the beta3 subunit. J Cell Sci, 2008, 121: 3243-352.

[22] Bant J S, Raman I M. Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc Natl Acad Sci USA, 107: 12357-12362.

[23] Grieco TM, Malhotra J D, Chen C, et al. Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron, 2005, 45: 233-244.

[24] Huth T, Rittger A, Saftig P, et al. beta-Site APP-cleaving enzyme1 (BACE1) cleaves cerebellar Na+ channel beta4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current. Pflugers Arch, 2011, 461: 355-371.

[1] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[2] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[3] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[4] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[5] 李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.
[6] 刘啸尘,刘护,张良,李春. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.
[7] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[8] 黄嘉慧, 汪才坤, 覃锦红, 陈龙冠, 黄云娜, 谢秋玲. N-糖基化对TNFR-Fc融合蛋白结构稳定性和生物活性的影响[J]. 中国生物工程杂志, 2016, 36(5): 12-19.
[9] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[10] 赵峰, 张宜俊, 冉艳红, 王兴勇, 叶倩君, 李弘剑. rhIL-12二硫键、N-糖基化位点及C端氨基酸序列分析[J]. 中国生物工程杂志, 2014, 34(5): 39-53.
[11] 杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.
[12] 隋雷鸣, 高华, 谷利, 杨巍巍, 杨慧. DJ-1保护大鼠中脑黑质多巴胺能神经元抵抗鱼藤酮损伤的研究[J]. 中国生物工程杂志, 2013, 33(5): 7-12.
[13] 凡复, 陈建国, 任宏伟. 帕金森病和阿尔茨海默氏病的基因治疗研究进展[J]. 中国生物工程杂志, 2013, 33(4): 129-135.
[14] 谢春芳, 黎玉凤, 刘大岭, 姚冬生. 利用N-糖基化修饰对β-甘露聚糖酶Man47的稳定性改造[J]. 中国生物工程杂志, 2013, 33(12): 79-85.
[15] 马中瑞, 韩东雷, 赵骏菲, 陈梦琳, 陈敏. 利用大肠杆菌生产N-糖蛋白和糖蛋白疫苗的研究进展[J]. 中国生物工程杂志, 2013, 33(11): 92-98.