Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (8): 95-103    DOI: 10.13523/j.cb.20190813
综述     
细胞培养过程对单克隆抗体糖基化修饰的影响和调控
江一帆1,贾宇1,王龙2,王志明1,*()
1 华北制药新药研究开发有限责任公司 抗体药物研究国家重点实验室 石家庄 050015
2 上海多宁生物科技有限公司 上海 201619
The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture
JIANG Yi-fan1,JIA Yu1,Wang Long2,WANG Zhi-ming1,*()
1 New Drug Research and Development Company Limited, North China Pharmaceutical Corporation, State Key Laboratory of Antibody Drug Development, Shijiazhuang 050015, China
2 Shanghai Duoning Biotechnology Co. Ltd., Shanghai 201619, China
 全文: PDF(1239 KB)   HTML
摘要:

在单克隆抗体药生产过程中,其糖基化修饰可能受到多种工艺参数的影响,因而容易产生异质性,并且抗体糖基化和抗体半衰期、免疫源性、ADCC、CDC等密切相关,所以单克隆抗体的糖基化修饰是重要的质量属性,需要在生物药尤其是生物类似药开发过程中重点关注,并加以调控。通过概述培养过程中的细胞株、培养工艺,以及培养基对糖型的影响,讨论如何在工艺开发过程开展研究,确保产品糖基化的一致性,从而保证单抗药物的疗效及安全性。

关键词: 单克隆抗体糖基化修饰培养工艺    
Abstract:

In monoclonal antibody drug production process, its glycosylation modification may be affected by a variety of process parameters, therefore come into being heterogeneity easily, and Antibody glycosylation is closely related to antibody half-life, immunogenicity, ADCC, CDC, and so on, so glycosylation is an important quality index for monoclonal antibody drugs, It is necessary to pay attention to and regulate the development of biological drugs, especially in the development of biosimilar. This paper strengthens the understanding of stable and consistent glycosylation by discussing the influence of various important control indicators in the culture process, such as pH, DO, osmolarity and temperature, to guide the efficacy and safety of monoclonal antibody drugs.

Key words: Monoclonal antibody    Glycosylation    Culture process
收稿日期: 2019-01-03 出版日期: 2019-09-18
ZTFLH:  Q81  
通讯作者: 王志明     E-mail: wzm3994@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江一帆
贾宇
王龙
王志明

引用本文:

江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.

JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture. China Biotechnology, 2019, 39(8): 95-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190813        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I8/95

图1  抗体糖基化合成[5]
图2  工程细胞株表达抗体常见N-糖基化类型[4]
[1] Batra J, Rathore A S . Glycosylation of monoclonal antibody products: current status and future prospects. Biotechnol Prog, 2016,32(5):1091-1102.
[2] Sha S, Cyrus A, Kurt B , et al. N-Glycosylation design and control of therapeutic monoclonal antibodies. Trends in Biotechnology, 2016,34(10):835-846.
[3] Maureen S, Michael B . Glycosylation in cell culture. Animal Cell Culture, 2015,9:237-258.
[4] 吕若芸, 陈忱, 魏敬双 . 治疗性抗体药物开发中IgG 亚型选择. 中国生物工程杂志, 2016,36(7):104-111.
Lv R Y, Chen C, Wei J S . Subclasses selection in therapeutic antibody development. China Biotechnology, 2016,36(7):104-111.
[5] Liu L M . Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. Journal of Pharmaceutical Sciences. 2015,104(6):1866-1884.
[6] Gupta K S, Shukla P . Glycosylation control technologies for recombinant therapeutic proteins. Applied Microbiology and Biotechnology. 2018,102(24):10457-10468.
[7] Li M Y, Ebel B, Paris C , et al. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Biotechnology Progress. 2018,32(2):486-493.
[8] Karste K, Bleckmann M, Joop van den H . Not limited to E. coli: versatile expression vectors for mammalian protein expression. Methods Mol Biol, 2017,1586:313-324.
[9] Strohl R W, Strohl M L. Therapeutic antibody engineering. Cambridge: Woodhead Publishing, 2012: 421-437, 459-595.
[10] Li F, Natarajan V, Shen Y J , et al. Cell culture processes for monoclonal antibody production. mABs, 2010,2:466-477.
[11] Baba M, Sato M, Kitoh K , et al. The distribution pattern of α2,3- and α2,6-linked sialic acids affects host cell preference in Toxoplasma gondii. Experimental Parasitology, 2015,155:74-81.
[12] Castilho A. Glyco-engineering methods and protocols. New York: Humana Press, 2015: 1-436.
[13] Brunner M, Fricke J, Kroll P , et al. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng, 2017,40:251-263.
[14] Jiang R, Chen H, Xu S . pH excursions impact CHO cell culture performance and antibody N-linked glycosylation. Bioprocess and Biosystems Engineering, 2018,41:1731-1741.
[15] Ivarsson M, Villiger T K, Morbidelli M , et al. Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. J Biotechnol, 2014; 188:88-96.
[16] Michael C B, Nimish G D, Nicholas R A-A , et al. Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng, 2010,105(6):1048-1057.
[17] Cleo K, Loscani J der V . Computational tools for predicting and controlling the glycosylation of biopharmaceuticals. Current Opinion in Chemical Engineering, 2018,22:89-97.
[18] Kunkel J P, Jan D C, Jamieson J C , et al. Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol, 1998,62(1):55-71.
[19] Butler M . Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology, 2006,50(1-3):57-76.
doi: 10.1007/s10616-005-4537-x
[20] Gawlitzek M, Estacio M, Furch T , et al. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotechnol Bioeng, 2009,103(6):1164-1175.
[21] Restelli V, Wang M D, Huzel N , et al. The effect of dissolved oxygen on the production and the glycosylation profile of recombinant human erythropoietin produced from CHO cells. Biotechnology & Bioengineering, 2010,94(3) : 481-494.
[22] Kunkel J P, Jan D C, Butler M , et al. Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog, 2000; 16:462-470.
[23] Serrato J A, Palomares L A, Meneses-Acosta A , et al. Heterogeneous conditions in dissolved oxygen affect n-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol Bioeng, 2004,88(2):176-188.
[24] McKnight N, Meier S, Chary S , et al. Platform validation of dissolved oxygen ranges for cell culture processes. ESACT, 2012,5:421-424.
[25] Lin J, Takagi M , et al. Metabolic flux change in hybridoma cells under high osmotic pressure. J Biosci Bioeng, 1999; 87(2):255-257.
[26] Zhu M M, Goyal A , et al. Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein b1: a case study. Biotechnol Prog, 2005; 21(1):70-77.
[27] Pacis E, Yu M, Autsen J , et al. Effects of cell culture conditions on antibody N-linked glycosylation-what affects high mannose 5 glycoform. Biotechnology & Bioengineering, 2011,108(10):2348-2358.
[28] Konno Y, Kobayashi Y, Takahashi K , et al. Fucose content of monoclonal antibodies can be controlled by culture medium osmolality for high antibody-dependent cellular cytotoxicity. Cytotechnology, 2012,64(3):249-265.
doi: 10.1007/s10616-011-9377-2
[29] Albert E S, William M M . Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content. Biotechnol. Prog, 2002,18, 346-353.
[30] Jernej G, Miha K, Uros N , et al. Metabolic network modelling of chinese hamster ovary (CHO) culture bioreactors operated as microbial cell factories. Acta Chim Slov. 2018,65(4):769-786.
[31] Si N S, Jedrzejewski P M, Lee K , et al. Model-based investigation of intracellular processes determining antibody fc-glycosylation under mild hypothermia. Biotechnology and Bioengineering, 2017,114(7):1570-1582.
[32] Chen F, Kou T, Fan L , et al. The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng, 2011,16(6):1157-1165.
[33] Hengarneh Agharnohseni, Maureen Spearrnan, Kaveh Ohadi , et al. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions. Journal of Industrial Microbiology & Biotechnology, 2017,44(7):1005-1020.
[34] Hennicke J, Reinhart D, Altmann F , et al. Impact of temperature and pH on recombinant human IgM quality attributes and productivity, New Biotechnology, 2019,50:20-26.
[35] Si N S, Sellick C, Lee K , et al. How does mild hypothermia affect monoclonal antibody glycosylation. Biotechnology and Bioengineering, 2014,112(6):1-29.
[36] Si N S, Lee K, Nayyar K , et al. Exploring cellular behavior under transient gene expression and its impact on mAb productivity and Fc-glycosylation. Biotechnology and Bioengineering, 2018,115(2):512-518.
[37] Fatemeh T, Behrouz V, Shayan M , et al. Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. Plos One, 2015,e0140597.
[38] 蔡洁行, 于颖佳, 陈乘 , 等. 提高抗体表达量和改良糖基化水平的细胞培养方法: 中国, CN 103320388 B. [2015. 10.28]. .
Cai J X, Yu Y J, Chen C , et al. Cell culture method capable of improving antibody expression levels and improving glycosylation levels: China, CN 103320388 B. [2015. 10.28]. .
[39] Harnish M N, Natalia I M, Michael J B , et al. Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese hamster ovary (CHO) cell culture. Current Opinion in Chemical Engineering, 2018,22:167-176.
[40] O·波普, N·博康, G·德拉内尔 , 等. 重组糖蛋白生产中的细胞生长和糖基化的调节: 中国, CN201580010823.[ 2016-11-16]. .
Popp O, Beaucamp N, Drabner G , et al. Modulation of cell growth and glycosylation in recombinant glycoprotein production: China, CN201580010823.[2016-11-16]. .
[41] Ehret J, Zimmermann M, Eichhorn T , et al. Thomas Impact of cell culture media additives on IgG glycosylation produced in CHO cells. Biotechnology and Bioengineering, 2019,116(4):816-830.
[42] Fan Y Z, Jimenez Del Val I, Müller C , et al. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnology and Bioengineering, 2015,112(3):521-535.
[43] Kim S M, Chang K H, Oh D J . Effect of environmental parameters on glycosylation of recombinant immunoglobulin g produced from recombinant CHO cells. Biotechnology and Bioprocess Engineering, 2018,23(4):456-464.
[44] Blondeel J M E, Braasch K, McGill T , et al. Tuning a MAb glycan profile in cell culture: supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. Journal of Biotechnology, 2015,214:105-112.
[45] Eric J M B, Marc G A . Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Biotechnology Advances. 2018,36(5):1505-1523.
[46] Hills A E, Patel A, Boyd P , et al. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnology & Bioengineering, 2001,75(2):239-251.
[47] Thuduppathy G, Madhava R P, Mahajan P , et al. Cell culture process: WIPO, WO 2015140700 A1. [2015-09-24]. .
[48] Yang W, Huang Y M, McElearney , et al. Control of protein glycosylation by culture medium supplementation and cell culture process parameters. United States, US 9, 944, 968 B2.[ 2018-04-17]. .
[49] Batra J, Rathore A S . Glycosylation of monoclonal antibody products: Current status and future prospects. Biotechnology Progress, 2016,32(5):1091-1102.
[50] Tescione L, Ryll T, Gilbert A. Manganese supplementation for control of glycosylation in mammalian cell culture process. United States, US 2018/0155753 A1.[ 2018-06-07]. .
[51] Crowell C K, Grampp G E, Rogers G N , et al. Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnology & Bioengineering, 2010,96(3):538-549.
[52] Hong Jong Kwang, Cho Sung Min, Yoon Sung Kwan . Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Applied Microbiology and Biotechnology, 2010,88(4):869-876.
doi: 10.1007/s00253-010-2790-1
[53] Gupta S, Kang S. Overexpression of N-glycosylation pathway regulators to modulate glycosylation of recombinant proteins. United States, US 2019/0010532 A1.[ 2019-01-10]. .
[1] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[2] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[3] 孔建涛,庄英萍,郭美锦. 基于DOE设计和氨基酸补加策略提高CHO细胞表达抗CD20单克隆抗体*[J]. 中国生物工程杂志, 2020, 40(12): 41-48.
[4] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[5] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[6] 高倩,江洪,叶茂,郭文娟. 全球单克隆抗体药物研发现状及发展趋势 *[J]. 中国生物工程杂志, 2019, 39(3): 111-119.
[7] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[8] 徐婧雯,张雪梅,吴忠香,朱文兵,蒋曦,巩蔚,严丽蔚,宋杰,李慧,董少忠. 抗树鼩CD3ε单克隆抗体的制备及生物学特性鉴定[J]. 中国生物工程杂志, 2018, 38(4): 54-62.
[9] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[10] 毛开云,范月蕾,王恒哲,王跃,陈大明. 全球PD-1/PD-L1单克隆抗体市场竞争格局 *[J]. 中国生物工程杂志, 2018, 38(11): 103-115.
[11] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[12] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[13] 张晶晶, 刘克东, 钱凯, 缪亚娜, 蔡燕飞, 李成媛, 陈蕴, 金坚. 稳定表达GLP-1类似物的CHO细胞株的构建及培养工艺研究[J]. 中国生物工程杂志, 2017, 37(5): 52-58.
[14] 李敏, 吴日伟. 国内外单抗药物市场概述[J]. 中国生物工程杂志, 2017, 37(3): 106-114.
[15] 邓义熹, 李继东, 李乐, 蒙国基, 于玉根. 添加SNS能显著提高CHT填料使用寿命的研究[J]. 中国生物工程杂志, 2017, 37(1): 81-88.