Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 69-77    DOI: 10.13523/j.cb.20180109
综述     
细胞代谢过程中的酶促糖基化及其功能
刘啸尘,刘护,张良,李春()
北京理工大学生物工程系生物转化与合成生物系统研究室 北京 100081
Enzymatic Glycosylation and Its Function in Metabolic Process of Cells
Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI()
Institute for Biotransformation and Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081,China
 全文: PDF(1045 KB)   HTML
摘要:

细胞代谢过程中多样的生化修饰反应能够精细调控细胞的活力与功能。其中,酶促糖基化是细胞代谢调控过程中普遍存在的一种分子修饰,对维持和调节细胞功能具有重要影响。糖基转移酶通过将糖基供体的糖基转移至相应的受体分子来实现糖基化修饰。受体分子经过糖基化修饰会改变其在细胞内的稳定性、溶解性和区域定位等特性,并在调节细胞周期、信号转导、蛋白质表达调控、应答反应和清除细胞异物等诸多生物过程中起着重要作用。简要介绍了细胞代谢过程中糖基转移酶超家族的分类、命名和催化机制。重点阐述细胞中蛋白质类生物大分子和小分子化合物的糖基化反应及其在细胞代谢过程中的功能。展望了细胞中糖基化反应及糖基转移酶在人类健康、医药产品、工业催化、食品和农业等领域的应用前景。

关键词: 细胞代谢过程糖基化反应蛋白质小分子代谢物    
Abstract:

The cell viability and functions are finely regulated through various biochemical modification occurred in the metabolism process. Enzymatic glycosylation is a common molecular modification in metabolic regulation and has an important impact on maintaining and regulating cells functions. Glycosyltransferases are enzymes that catalyze the transfer glycosyl moieties from activated donor to a wide and diverse range of acceptor molecules. The glycosylation of the acceptor molecules lead to changes of their intracellular properties such as stability, solubility and regional localization, and thus played important roles in many bioprocesses including cell cycles, signal transduction, protein expression, resistance responses, and clearance of pollutants. The classification, naming and catalytic mechanism of glycosyltransferase superfamily are briefly introduced. Then the glycosylation of protein and small molecule compounds and their functions in metabolic processes are reviewed, when the glycoside was transferred to intracellular biomolecule proteins and small molecule compounds. At last,the application prospects of glycosyltransferases and glycosylation reactions in the fields of human health pharmaceutical products, industrial catalysis, food and agriculture are looked forward.

Key words: Cell    Metabolic process    Enzyme    Glycosylation reaction    Protein    Small molecule metabolites
收稿日期: 2017-09-05 出版日期: 2018-01-31
ZTFLH:  Q53  
基金资助: 国家自然科学基金(21506011, 21606019);国家杰出青年科学基金资助项目(21425624)
作者简介: 通讯作者 李春,电子信箱: lichun@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘啸尘
刘护
张良
李春

引用本文:

刘啸尘,刘护,张良,李春. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.

Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells. China Biotechnology, 2018, 38(1): 69-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180109        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/69

图1  尿苷二磷酸糖基转移酶超家族的命名方式
家族物种
1~8哺乳动物
9~27无脊椎动物
31~50昆虫
51~70真菌
71~100植物
101~200细菌
201为昆虫类的节肢动物
表1  UGT中不同家族所对应的生物物种
受体分子细胞代谢过程的影响实 例参考文献
蛋白质分子维持蛋白质正常功能转运蛋白(hTPPT) N-糖基化异常丧失了其对硫胺素焦磷酸的转运功能[9]
蛋白质分子维持细胞结构稳定细菌细胞膜和细胞外区域的蛋白糖基化水平下降抑制细菌的生长[10]
蛋白质分子调节基因转录与表达蛋白质SCAP发生糖基化修饰后激活脂肪合成基因的表达[11]
蛋白质分子调节细胞周期周期调控蛋白c-Myc糖基化后可以促进细胞周期进程[12]
蛋白质分子参与信号转导细胞内 β-catenin 蛋白糖基化最终导致 Wnt/β-catenin 途径使信号通路关闭[13]
小分子化合物消除小分子化合物细胞毒性对棉子酚进行糖基化修饰的作用会消除棉子酚对昆虫细胞的毒性[14]
小分子化合物参与胁迫应答反应对小分子花青素的糖基化修饰作用会显著增强植物对干旱和盐胁迫的耐受性[15]
小分子化合物调节激素平衡拟南芥中通过糖基转移作用调节脱落酸浓度,维持其在细胞中的内稳态[16]
表2  糖基化修饰作用对细胞代谢过程的影响
图2  蛋白质翻译后修饰作用
图3  转运蛋白的糖基化修饰维持其正常功能
图4  蛋白质糖基化反应参与基因转录与翻译[11]
图5  蛋白质糖基化反应调节细胞周期[12]
图6  β-catenin蛋白糖基化参与Wnt/β-catenin信号通路的转导
图7  小分子糖基化反应及其功能
[1] De B F, Maertens J, Beauprez J, et al.Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnology Advances, 2015, 33(2): 288-302.
doi: 10.1016/j.biotechadv.2015.02.005 pmid: 25698505
[2] Dennis J W, Granovsky M, Warren C E.Protein glycosylation in development and disease. Bioessays, 1999, 21(5): 412-421.
doi: 10.1002/(SICI)1521-1878(199905)21:53.0.CO;2-5 pmid: 10376012
[3] Tiwari P, Sangwan R S, Sangwan N S.Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnology Advances, 2016, 34(5): 714-739.
doi: 10.1016/j.biotechadv.2016.03.006 pmid: 27131396
[4] Ohtsubo K, Marth J D.Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5): 855-867.
doi: 10.1016/j.cell.2006.08.019 pmid: 16959566
[5] Campbell J A, Davies G J, Bulone V, et al.A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 1997, 326(3): 929-939.
doi: 10.1006/abbi.1997.0277 pmid: 9334165
[6] Coutinho P M, Deleury E, Davies G J, et al.An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 2003, 328(2): 307-317.
doi: 10.1002/ca.10202 pmid: 12691742
[7] Bock K W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochemical Pharmacology, 2016, 99: 11-17.
doi: 10.1016/j.bcp.2015.10.001 pmid: 26453144
[8] Liang D M, Liu J H, Wu H, et al.Glycosyltransferases: mechanisms and applications in natural product development. Chemical Society Reviews, 2015, 44(22): 8350-8374.
doi: 10.1039/c5cs00600g
[9] Nabokina S M, Subramanian V S, Said H M.The human colonic thiamine pyrophosphate transporter (hTPPT) is a glycoprotein and N-linked glycosylation is important for its function. Biochimica Et Biophysica Acta-Biomembranes, 2016, 1858(4): 866-871.
[10] Yu L Y, He H B, Hu Z F, et al.Comprehensive quantification of N-glycoproteome in Fusarium graminearum reveals intensive glycosylation changes against fungicide. Journal of Proteomics, 2016, 142: 82-90.
doi: 10.1016/j.jprot.2016.05.011 pmid: 27180282
[11] Cheng C M, Ru P, Geng F, et al.Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell, 2015, 28(5): 569-581.
doi: 10.1016/j.ccell.2015.09.021 pmid: 4643405
[12] Swamy M, Pathak S, Grzes K M, et al.Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 2016, 17(6): 712-720.
doi: 10.1038/ni.3439 pmid: 27111141
[13] Chen Y, Jin L, Xue B, et al.NRAGE induces beta-catenin/Arm O-GlcNAcylation and negatively regulates Wnt signaling. Biochemical and Biophysical Research Communications, 2017, 487(2): 433-437.
doi: 10.1016/j.bbrc.2017.04.080
[14] Krempl C, Sporer T, Reichelt M, et al.Potential detoxification of gossypol by UDP-glycosyltransferases in the two Heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology, 2016, 71: 49-57.
doi: 10.1016/j.ibmb.2016.02.005 pmid: 26873292
[15] Konig S, Feussner K, Kaever A, et al.Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytologist, 2014, 202(3): 823-837.
doi: 10.1111/nph.12709 pmid: 24483326
[16] Liu Z, Yan J P, Li D K, et al.UDP-glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiology, 2015, 167(4): 1659-U846.
doi: 10.1104/pp.15.00053 pmid: 25713337
[17] Wiederschain G Y.Glycobiology: Progress, problems, and perspectives. Biochemistry-Moscow, 2013, 78(7): 679-696.
doi: 10.1134/S0006297913070018 pmid: 24010832
[18] Bond M R, Hanover J A.A little sugar goes a long way: The cell biology of O-GlcNAc. Journal of Cell Biology, 2015, 208(7): 869-880.
doi: 10.1083/jcb.201501101 pmid: 25825515
[19] Van D S, Rudd P M, Dwek R A, et al.Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33(3): 151-208.
doi: 10.1080/10409239891204198 pmid: 9673446
[20] Zhang X Y, Wang Y Z.Glycosylation quality control by the golgi structure. Journal of Molecular Biology, 2016, 428(16): 3183-3193.
doi: 10.1016/j.jmb.2016.02.030 pmid: 26956395
[21] Zhang X L.Roles of glycans and glycopeptides in immune system and immune-related diseases. Current Medicinal Chemistry, 2006, 13(10): 1141-1147.
doi: 10.2174/092986706776360897 pmid: 16719775
[22] Takeuchi H, Haltiwanger R S.Role of glycosylation of Notch in development. Seminars in Cell & Developmental Biology, 2010, 21(6): 638-645.
doi: 10.1016/j.semcdb.2010.03.003 pmid: 2898917
[23] Bowles D, Isayenkova J, Lim E K, et al.Glycosyltransferases: managers of small molecules. Current Opinion in Plant Biology, 2005, 8(3): 254-263.
doi: 10.1016/j.pbi.2005.03.007 pmid: 15860422
[24] Rai A, Umashankar S, Rai M, et al.Coordinate regulation of metabolite glycosylation and stress hormone biosynthesis by TT8 in Arabidopsis. Plant Physiology, 2016, 171(4): 2499-2515.
doi: 10.1104/pp.16.00421 pmid: 27432888
[25] Dima O, Morreel K, Vanholme B, et al.Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell, 2015, 27(3): 695-710.
doi: 10.1105/tpc.114.134643 pmid: 25700483
[26] Maag D, Dalvit C, Thevenet D, et al.3-beta-D-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 2014, 102(8): 97-105.
doi: 10.1016/j.phytochem.2014.03.018 pmid: 24713572
[27] Gwak H, Kim S, Dhanasekaran D N, et al.Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells. Cancer Letters, 2016, 371(2): 347-353.
doi: 10.1016/j.canlet.2015.11.032
[28] Lauf P K, Adragna N C.K-CI cotransport: Properties and molecular mechanism. Cellular Physiology and Biochemistry, 2000, 10(5-6): 341-354.
doi: 10.1159/000016357 pmid: 11125215
[29] Weng T Y, Chiu W T, Liu H S, et al.Glycosylation regulates the function and membrane localization of KCC4. Biochimica Et Biophysica Acta-Molecular Cell Research, 2013, 1833(5): 1133-1146.
[30] Chen P H, Smith T J, Wu J, et al. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. The EMBO Journal, 2017,36(15):2233-2250.
[31] WellS L, Vosseller K, Hart G W. Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-GlcNAc. Science, 2001, 291(5512): 2376-2378.
doi: 10.1126/science.1058714 pmid: 11269319
[32] Barron C C, Bilan P J, Tsakiridis T, et al.Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism-Clinical and Experimental, 2016, 65(2): 124-139.
doi: 10.1016/j.metabol.2015.10.007 pmid: 26773935
[33] Preston G C, Sinclair L V, Kaskar A, et al.Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. Embo Journal, 2015, 34(15): 2008-2024.
doi: 10.15252/embj.201490252 pmid: 4551349
[34] Tan L, Showalter A M, Egelund J, et al. Arabinogalactan-proteins and the research challenges for these enigmatic plant cell surface proteoglycans. Frontiers in Plant Science, 2012, 3(140):1-10.
[35] Basu D, Tian L, Debrosse T, et al.Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS One, 2016, 11(1): e0145092.
[36] Tan F Y Y, Tang C M, Exley R M. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends in Biochemical Sciences, 2015, 40(7): 342-350.
doi: 10.1016/j.tibs.2015.03.016 pmid: 25936979
[37] Yuan J S, Tranel P J, Stewart C N.Non-target-site herbicide resistance: a family business. Trends in Plant Science, 2007, 12(1): 6-13.
doi: 10.1016/j.tplants.2006.11.001
[38] Poppenberger B, Berthiller F, Lucyshyn D, et al.Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278(48): 47905-47914.
doi: 10.1074/jbc.M307552200 pmid: 12970342
[39] Lin J S, Huang X X, Li Q, et al.UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant Journal, 2016, 88(1): 26-42.
doi: 10.1111/tpj.13229 pmid: 27273756
[40] Barros J, Serk H, Granlund I, et al.The cell biology of lignification in higher plants. Annals of Botany, 2015, 115(7): 1053-1074.
doi: 10.1093/aob/mcv046 pmid: 4648457
[41] Saema S, Rahman L U, Singh R, et al.Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Reports, 2016, 35(1): 195-211.
doi: 10.1007/s00299-015-1879-5
[42] Mishra M K, Chaturvedi P, Singh R, et al.Overexpression of WsSGTL1 gene of withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One, 2013, 8(4): e63064.
doi: 10.1371/journal.pone.0063064 pmid: 23646175
[43] Li P, Li Y J, Zhang F J, et al.The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal, 2017, 89(1): 85-103.
doi: 10.1111/tpj.13324 pmid: 27599367
[44] Morant A V, Jorgensen K, Jorgensen C, et al.beta-glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69(9): 1795-1813.
doi: 10.1016/j.phytochem.2008.03.006 pmid: 18472115
[45] Ostrowski M, Jakubowska A.Udp-glycosyltransferases of plant hormones. Postepy Biologii Komorki, 2013, 40(1): 141-160.
doi: 10.2478/acb-2014-0003
[46] Jin S H, Ma X M, Han P, et al.UGT74D1 Is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS One, 2013, 8(4): e61705.
doi: 10.1371/journal.pone.0061705 pmid: 23613909
[47] Song C K, Hong X T, Zhao S, et al.Glucosylation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology, 2016, 171(1): 139-151.
doi: 10.1104/pp.16.00226 pmid: 26993618
[48] Jaakola L.New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483.
doi: 10.1016/j.tplants.2013.06.003 pmid: 23870661
[49] Miyoshi E, Kamada Y.Application of glycoscience to the early detection of pancreatic cancer. Cancer Science, 2016, 107(10): 1357-1362.
doi: 10.1111/cas.13011 pmid: 27418030
[50] Zuegg J, Muldoon C, Adamson G, et al.Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nature Communications, 2015, 6: 1-11.
doi: 10.1038/ncomms8719 pmid: 4530474
[51] Mullard A.Can next-generation antibodies offset biosimilar competition. Nature Reviews Drug Discovery, 2012, 11(6): 426-428.
doi: 10.1038/nrd3749 pmid: 22653202
[52] 贺真蛟, 佟晨瑶, 耿放, 等. 糖基化修饰对IgG/IgY结构和功能特性的影响. 中国食品学报, 2017, 17(4): 174-181.
He Z J, Tong C Y, Geng F, et al.The effects of glycosylation on the structure and functional properties of IgG/IgY. Journal of Chinese Institute of Food Science and Technology, 2017, 17(4): 174-181.
[53] 张芳, 许之珏, 徐颖姣, 等. IgG糖基化与疾病相关性研究进展. 生命科学, 2017, 29(4): 319-330.
Zhang F, Xu Z J, Xu Y J, et al.The glycosylation of immunoglobulin G and its alterations in diseases. Chinese Bulletin of Life Sciences, 2017, 29(4): 319-330.
[54] Huang G, Lv M, Hu J, et al.Glycosylation and activities of natural products. Mini-Reviews in Medicinal Chemistry, 2016, 16(12): 1013-1016.
[55] 冯旭东,吕波,李春. 酶分子稳定性改造研究进展. 化工学报, 2016,67(1): 277-284.
doi: 10.11949/j.issn.0438-1157.20151025
Feng X D, Lu B, Li C.Advances in enzyme stability modification. CIESC Journal, 2016, 67(1): 277-284.
doi: 10.11949/j.issn.0438-1157.20151025
[56] 汪胡芳, 莫丽英, 王杏利, 等. 糖基化改性甜菊苷、橙皮苷及芦丁苷作为新型药物载体的研究与应用. 中国实验方剂学杂志, 2017, 23(23): 220-227.
Wang H F, Mo L Y, Wang X L, et al. Research advances in application of transglycosylated stevioside, hesperidin and rutin as new drug carrier materials. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(23): 220-227.
[1] 谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.
[2] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[3] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[4] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[5] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[6] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[7] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[8] 李志刚,顾阳,谭海,张中华,常景玲. 氨茶碱与柠檬酸盐协同作用促进环磷酸腺苷发酵生产[J]. 中国生物工程杂志, 2021, 41(7): 50-57.
[9] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[10] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[11] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[12] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[13] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[14] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[15] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.