Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (5): 97-106    DOI: 10.13523/j.cb.20170512
综述     
糖蛋白的去糖基化方法研究进展
徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟
南京林业大学轻工科学与工程学院 南京 210037
Research Progress on the Methods of Deglycosylation of Glycoproteins
XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong
College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
 全文: PDF(654 KB)   HTML
摘要:

糖组学是继基因组学及蛋白质组学后的新兴研究领域,糖基化是非常重要的一种蛋白质翻译后修饰,在多种生物过程中扮演着重要角色,异常糖基化与一些疾病的发生发展密切相关,因此糖基化的研究已成为研究热点。去糖基化后能够影响糖蛋白的活性、分泌等物化性质,而且去糖基化也是糖基化研究的主要技术手段,因此综述了各种去糖基化的方法,各种方法的优缺点和适用范围及去糖基化后的结构检测方法等,为研究去糖基化对大分子物质的构效关系提供参考。

关键词: 技术手段糖基化糖蛋白构效关系去糖基化    
Abstract:

Glycomics is emerging after genomics and proteomics research, glycosylation is an important post-translation modification of proteins which plays an significant role in many biological processes, abnormal glycosylation is closely related to the occurrence of some diseases development, therefore, glycosylation research has become a hot research topic. Deglycosylation can affect the activity, secretion and other physical and chemical properties of glycoprotein, and deglycosylation is also the main technical means of glycosylation research, various methods of deglycosylation, the advantages and disadvantages of various methods and the applicable scope as well as the detection methods of the deglycosylation were summarized, and provided a reference for the study of structure-activity macromolecules.

Key words: Glycosylation    Structure-activity    Deglycosylation    Technical means    Glycoprotein
收稿日期: 2016-12-02 出版日期: 2017-05-25
ZTFLH:  Q513+.2  
基金资助:

江苏省自然科学基金青年基金(BK20150883)、江苏高校优势学科建设工程项目(PAPD)、南方现代林业协同创新中心科研项目资助项目

通讯作者: 吴彩娥     E-mail: wucaie@njfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.

XU Yun-qiao, LI Ting-ting, WU Cai-e, FAN Gong-jian, LI Tong. Research Progress on the Methods of Deglycosylation of Glycoproteins. China Biotechnology, 2017, 37(5): 97-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170512        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I5/97

[1] Bernd M, Heiko M. Conformation of glycopeptides and glycoproteins. Cheminform, 2006, 38(50):187-251.
[2] Newrzella D, Stoffel W. Functional analysis of the glycosylation of murine acid sphingomyelinase.. Journal of Biological Chemistry, 1996, 271(50):32089-32095.
[3] Hoshida H, Fujita T, Cha-Aim K, et al. N-glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable α-amylase in Saccharomyces cerevisiae. Applied Microbiology & Biotechnology, 2013, 97(12):5473-5482.
[4] Byatt J C, Welply J K, Leimgruber R M, et al. Characterization of glycosylated bovine placental lactogen and the effect of enzymatic deglycosylation on receptor binding and biological activit.. Endocrinology, 1990, 127(3):1041-1049.
[5] Robert G, Elner R, Lisa M, et al.Glycoprotein Analysis Manual. 1st Ed. Poole:Sigma-Aldrich, 2004, 22-23.
[6] Suzuki T. A Cytoplasmic Peptide:N-glycanase and ER-Associated Degradation.//Naoyuki T.Experimental Glycoscience. Springer Japan, 2008:201-203.
[7] Butters T, Neville D. Glycoprotein Analysis. UK:Molecular Biomethods Handbook, 2007:491-502.
[8] Steube K, Gross V, Hösel W, et al. Different susceptibilitiesof complex-, hybrid-and high-mannose-type α1-inhibitor and α1-acid glycoprotein to endo-β-N-acetylglucosaminidase F and peptide:N-glycosidase F.Glycoconjugate Journal, 1986, 3(3):247-254.
[9] Hirani S, Bernasconi R J, Rasmussen J R. Use of N-glycanase to release asparagine-linked oligosaccharides for structural analysis. Analytical Biochemistry, 1987, 162(2):485-492.
[10] Mann A C, Self C H, Turner G A. A general method for the complete deglycosylation of a wide variety of serum glycoproteins using peptide-N -glycosidase-F. Glycosylation & Disease, 1994, 1(4):253-261.
[11] R Nuck, M Zimmermann, D Sauvageot, et al. Optimized deglycosylation of glycoproteins by peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase from Flavobacterium meningosepticum. Glycoco Njugate Journal, 1990, 7(4):279-286.
[12] Altmann F, Schweiszer S, Weber C. Kinetic comparison of peptide:N-glycosidases F and A reveals several differences in substrate specificity. Glycoconjugate Journal, 1995, 12(1):84-93.
[13] Yagi H, Yasukawa N, Yu S, et al. The expression of sialylated high-antennary N-glycans in edible bird's nest.Carbohydrate Research,2008,343(8):1373-1377.
[14] Kim B S, Hwang H S, Park H, et al. Effects of selective cleavage of high-mannose-type glycans of Maackia amurensis, leukoagglutinin on sialic acid-binding activity. Biochimica Et Biophysica Acta, 2015, 1850(9):1815-1821.
[15] Duan C, Rosen S, Towt J, et al. Generation of carbohydrate-deficient transferrin by enzymatic deglycosylation of human transferrin.. Applied Biochemistry & Biotechnology, 1998, 69(3):217-224.
[16] Marcus S E, Bowles D J. Deglycosylation of a lectin intermediate during assembly of Con A. Protoplasma, 1988, 147(2-3):113-116.
[17] Koutsioulis D, Landry D, Guthrie E P. Novel endo-α-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology, 2008, 18(10):799-805.
[18] Ishii-Karakasa I, Iwase H, Hotta K. Structural determination of the O-linked sialyl oligosaccharides liberated from fetuin with endo-α-N-acetylgalacto saminidase-S by HPLC analysis and 600-MHz 1 H-NMR spectroscopy. European Journal of Biochemistry, 1997, 247(2):709-715.
[19] Stubbs H J, Brasch D J, Emerson G W, et al. Hydrolase and transferase activities of the β-1,3-exoglucanase of Candida albicans. European Journal of Biochemistry, 1999, 263(3):889-895.
[20] Abd Hamid U M, Royle L, Saldova R, et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression.. Glycobiology, 2008, 18(12):1105-1118.
[21] 杜先锋, 许时婴, 王璋. 黏液糖蛋白去糖基化作用的研究进展. 天然产物研究与开发, 1997, 10(4):95-96. Du X F, Xu S Y,Wang Z. research progress on the role of Mucin glycoprotein in deglycosylation. Journal of Natural Products Research and Development, 1997, 10(4):95-96.
[22] Rajesh T, Jeon J M, Song E, et al. Putative role of a Streptomyces coelicolor-derived α-mannosidase in deglycosylation and antibiotic production.. Applied Biochemistry & Biotechnology, 2014, 172(3):1639-1651.
[23] Quaranta A, Srokabartnicka A, Tengstrand E, et al. N-glycan profile analysis of transferrin using a microfluidic compact disc and MALDI-MS. Analytical & Bioanalytical Chemistry, 2016, 408(17):4765-4776.
[24] Rehm H. Enzymatic deglycosylation of the dendrotoxin-binding protein. Febs Letters, 1989, 247(1):28-30.
[25] Mizuochi T, Hounsell E F. Release of N-Linked Oligosaccharide Chains by Hydrazinolysis.The Protein Protocols Handbook. UK:Humana Press, 2002:1239-1242.
[26] Satake K, Miyatake N, Kamo M, et al. Partial hydrazinolysis of protein at the asparaginyl linkage. Journal of Protein Chemistry, 1992, 11(4):366-367.
[27] Iwase H, Ishii-Karakasa I, Hotta K. S20.12 Analysis of protein portion of porcine gastric mucus glycoprotein after release of O-linked oligosaccharide by gas-phase hydrazinolysis. Glycoconjugate Journal, 1993, 10(4):345-345.
[28] Brockhausen I, Grey A A, Pang H, et al. N-acetylglucosaminyltransferase substrates prepared from glycoproteins by hydrazinolysis of the asparagine-N-acetylglucosamine linkage. Purification and structural determination of oligosaccharides with mannose and N-acetylglucosamine at the non-reducing termini. Glycoconjugate Journal, 1989, 5(4):419-448.
[29] Gerken T A, Gupta R, Jentoft N. A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry, 1992, 31(3):639-648.
[30] 丛莉, 陈小平. 日本血吸虫虫卵可溶性糖蛋白去糖基化对其刺激机体产生Th2免疫应答能力的影响. 国际医学寄生虫病杂志, 2011, 38(5):261-264. Cong L, Chen X P. The deglycosylation of soluble glycoprotein from Schistosoma japonicum eggs on its ability to stimulate the body to produce Th2 immune response. International Journal of Medical Parasitic Diseases, 2011, 38(5):261-264.
[31] Hong J C, Kim Y S. Alkali-catalyzed beta-elimination of periodate-oxidized glycans:a novel method of chemical deglycosylation of mucin gene products in paraffin embedded sections. Glycoconjugate Journal, 2000, 17(10):691-703.
[32] 佟巍. 基于化学衍生化的蛋白质N-糖链质谱鉴定新方法研究. 北京:中国人民解放军军事医学科学院, 2012, 5:5-10. Wei T.Based on the Chemical Derivatization of Protein N-sugar Chain Mass Spectrometry to Identify New Method Research. Beijing:The Academy of Military Medical Sciences of the Chinese PLA, 2012:5-10.
[33] Yadav S C, Prasanna Kumari N K, Jagannadham M V. Deglycosylated milin unfolds via inactive monomeric intermediates. European Biophysics Journal, 2010, 39(12):1581-1588.
[34] Michaud D, Seye A, Driouich A, et al. Purification and partial characterization of an acid β-fructosidase from sweet-pepper (Capsicum annuum L.) fruit. Planta, 1993, 191(3):308-315.
[35] Levitskaya S V, Yunusov T S. A study of the lectins of Datura innoxia seeds Ⅱ. deglycosylation with trifluoromethane sulfonic acid. Chemistry of Natural Compounds, 1995, 31(1):129-133.
[36] Douglass J F, Jaya N N, Vedvick T S, et al. Chemical deglycosylation can induce methylation, succinimide formation, and isomerization. Journal of Protein Chemistry, 2001, 20(7):571-576.
[37] Szabo Z, Guttman A, Karger B L. Rapid release of N-linked glycans from Glycoproteins by pressure-cycling technology. Analytical Chemistry, 2010, 82(6):2588-2593.
[38] Ying C, Chen Y, Yu C. Fast and Efficient non-reduced Lys-C digest using pressure cycling technology for antibody disulfide mapping by LC-MS. Journal of Pharmaceutical and Biomedical Analysis, 2016, 129:203-209.
[39] Prater B D, Connelly H M, Qin Q, et al. High-throughput immunoglobulin G N -glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Analytical Biochemistry, 2009, 385(1):69-79.
[40] Frisch E, Schwedler C, Kaup M, et al. Endo-β-N -acetylglucosaminidase H de-N-glycosylation in a domestic microwave oven:Application to biomarker discovery. Analytical Biochemistry, 2013, 433(1):65-69.
[41] Wendy N, Arellano F, Arnott D, et al. Rapid removal of N-linked oligosaccharides using microwave assisted enzyme catalyzed deglycosylation. International Journal of Mass Spectrometry, 2007, 259(1-3):117-123.
[42] Vesper H W, Mi L, Enada A, et al. Assessment of microwave-assisted enzymatic digestion by measuring glycated hemoglobin A1c by mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19(19):2865-2870.
[43] Lin S S, Wu C H, Sun M C, et al. Microwave-assisted enzyme-catalyzed reactions in various solvent systems. Journal of the American Society for Mass Spectrometry, 2005, 16(4):581-588.
[44] Szigeti M, Bondar J, Gjerde D, et al. Rapid N -glycan release from glycoproteins using immobilized PNGase F microcolumns. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2016,1032:139-143.
[45] Krenkova J, Lacher N A, Svec F. Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography-mass spectrometry of glycans. Journal of Chromatography A, 2009, 1216(15):3252-3259.
[46] Krenkova J, Szekrenyes A, Keresztessy Z, et al. Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. Journal of Chromatography A, 2013, 1322(24):54-61.
[47] Agrawal P K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 1992, 31(10):3307-3330.
[48] Mcalister M S, Davis B, Pfuhl M, et al. NMR analysis of the N-terminal SRCR domain of human CD5:Engineering of a glycoprotein for superior characteristics in NMR experiments. Protein Engineering, 1998, 11(10):847-853.
[49] Westerholm-Parvinen A, Selinheimo E, Boer H, et al. Expression of the Trichoderma reesei, tyrosinase 2 in Pichia pastoris:Isotopic labeling and physicochemical characterization. Protein Expression & Purification, 2007, 55(1):147-158.
[50] Rooijen J J M V, Jeschke U, Kamerling J P, et al. Expression of N-linked sialyl Le(x) determinants and O-glycans in the carbohydrate moiety of human amniotic fluid transferrin during pregnancy.. Glycobiology, 1998, 8(11):1053-1064.
[51] Merry A H, Neville D C A, Royle L, et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Analytical Biochemistry, 2002, 304(1):91-99.
[52] Yabu M, Korekane H, Miyamoto Y. Precise structural analysis of O-linked oligosaccharides in human serum.. Glycobiology, 2014, 24(6):542-553.
[53] Harvey D J, Royle L, Radcliffe C M, et al. Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry.. Analytical Biochemistry, 2008, 376(1):44-60.
[54] Morelle W, Michalski J C. Analysis of protein glycosylation by mass spectrometry. Nature Protocol, 2007, 2(7):1585-1602.
[55] Cio?czyk-Wierzbicka D, Amoresano A, Casbarra A, et al. The structure of the oligosaccharides of N-cadherin from human melanoma cell lines.. Glycoconjugate Journal, 2004, 20(7-8):483-492.
[56] Bunkenborg J, Hägglund P, Jensen O N. Modification-Specific Proteomic Analysis of Glycoproteins in Human Body Fluids by Mass Spectrometry. Proteomics of Human Body Fluids. New York:Humana Press, 2006:107-128.
[57] Hsieh J F, Chen S T. Comparative studies on the analysis of glycoproteins and lipopolysaccharides by the gel-based microchip and SDS-PAGE. Biomicrofluidics, 2007, 1(1):49-55.
[58] Sangadala S, Kim D, Brewer J M, et al. Subunit structure of deglycosylated human and swine trachea and Cowper's gland mucin glycoproteins. Molecular & Cellular Biochemistry, 1991, 102(1):71-93.
[59] Bhattacharyya S N, Sr E J, Manna B. Deglycosylation of neutral and acidic human colonic mucin.. Inflammation, 1990, 14(1):93-107.
[60] Martínez-Pla J J, Martín-Biosca Y, Sagrado S, et al. Chiral separation of bupivacaine enantiomers by capillary electrophoresis partial-filling technique with human serum albumin as chiral selector. Journal of Chromatography A, 2004, 1048(1):111-118.
[61] Ma S, Lau W, Keck R G, et al. Capillary electrophoresis of carbohydrates derivatized with fluorophor. Methods in Molecular Biology, 2005, 308:397-409.
[62] Nakano M,Kakehi K, Taniguchi N,et al.Capillary Electrophoresis and Capillary Electrophoresis-Mass Spectrometry for Structural Analysis of N -glycans Derived from Glycoproteins.Capillary Electrophoresis of Carbohydrates. New York:Humana Press, 2011:205-235.
[63] Litvinenko V I, Makarov V A. The alkaline hydrolysis of flavonoid glycosides. Chemistry of Natural Compounds, 1969, 5(5):305-306.
[64] Park H R, Ghafoor K, Lee D, et al. Beta-glycosidase-assisted bioconversion of ginsenosides in purified crude saponin and extracts from red ginseng (Panax ginseng C. A. Meyer). Food Science and Biotechnology, 2013, 22(6):1629-1638.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[3] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[4] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[5] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[6] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[7] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[8] 李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.
[9] 刘啸尘,刘护,张良,李春. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.
[10] 黄嘉慧, 汪才坤, 覃锦红, 陈龙冠, 黄云娜, 谢秋玲. N-糖基化对TNFR-Fc融合蛋白结构稳定性和生物活性的影响[J]. 中国生物工程杂志, 2016, 36(5): 12-19.
[11] 童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 85-91.
[12] 周婷婷, 潘传涌, 张建鹏, 金慧英. 钠离子通道β4亚基糖基化的初步研究[J]. 中国生物工程杂志, 2014, 34(7): 10-16.
[13] 赵峰, 张宜俊, 冉艳红, 王兴勇, 叶倩君, 李弘剑. rhIL-12二硫键、N-糖基化位点及C端氨基酸序列分析[J]. 中国生物工程杂志, 2014, 34(5): 39-53.
[14] 付辉, 李菲菲, 马琼, 付怀秀, 崔玉芳, 毛建平. 逆转录法筛选mRNA靶点设计核酶对GPA的表达干预实验研究[J]. 中国生物工程杂志, 2014, 34(3): 84-90.
[15] 杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.