Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (12): 21-28    
研究报告     
GshF在大肠杆菌中的表达及酶学性质研究
陈永露, 吴绵斌, 林建平, 杨立荣, 岑沛霖
生物质化工教育部重点实验室 浙江大学化学工程与生物工程系 杭州 310027
Characterization of GshF Expressed in Escherichia coli
CHEN Yong-lu, WU Mian-bin, LIN Jian-ping, YANG Li-rong, CEN Pei-lin
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1439 KB)   HTML
摘要: 谷胱甘肽是参与细胞活动的最普遍的非蛋白巯基化合物,是机体内重要的活性三肽,因其抗氧化作用而在医药、食品、化妆品等行业有着广泛的应用,生物合成是制备谷胱甘肽的主要方法,一直引起广泛关注。近年来发现的双功能酶GshF可同时催化谷胱甘肽生物合成的两步反应,有望提高酶法催化产谷胱甘肽的效率,但该酶的酶学性质尚未得到充分研究。克隆了来自Streptococcus thermophilus的双功能酶基因gshF,并用大肠杆菌表达,研究表明,重组菌于37℃培养4 h后经0.1 mmol/L IPTG诱导,然后在30℃下表达,胞内酶活可达44 U/L。表达产物经破胞、离心、亲和层析等步骤分离纯化后,进一步考察了其相关酶学性质,结果表明,该酶最适pH为8.0,最适温度为37℃,还研究了其最适pH和温度下的稳定性。最终通过重组菌酶法催化合成谷胱甘肽得到的最高产量为2.11g/L。这些对该酶在谷胱甘肽生物合成上的应用有重要的借鉴作用。
关键词: 酶法催化谷胱甘肽GshF大肠杆菌酶学性质    
Abstract: Glutathione, an important active tripeptide, is the most common non-protein thiol compound involved in cell activity. It has a wide range of applications in the pharmaceutical, food, cosmetics and other industries because of its antioxidant effect. And improving glutathione production via biosynthesis is the main method and has always been a focus. The bifunctional enzyme GshF discorvered recently can catalyze the two-step reaction of glutathione biosynthesis simultaneously and is expected to improve the catalytic efficiency. However, the properties of the enzyme have not been sufficiently studied. A bifunctional enzyme gene gshF from Streptococcus thermophilus was cloned and expressed in E. coli. GshF reached its highest activity of 44 U/L when the recombinant was induced with 0.1mmol/L IPTG at 30℃ after being cultivated for 4 hours at 37℃. The related enzymatic properties of GshF were achieved after such purification steps as cell lysis, centrifugation and affinity chromatography. The optimum pH and temperature was 8.0 and 37℃ respectively. The stabilities of GshF under its optimum pH and temperature were also studied. The final maximum yield of glutathione was 2.11g/L by enzymatic synthesis of recombinant bacteria. It is of important reference on the application of the enzyme in the biosynthesis of glutathione.
Key words: Glutathione    GshF    Escherichia coli    Enzymatic properties    Enzymatic catalysis
收稿日期: 2013-10-17 出版日期: 2013-12-25
ZTFLH:  Q786  
基金资助: 浙江省重点科技创新团队计划资助项目(2011R50002)
通讯作者: 林建平,E-mail:linjp@zju.edu.cn     E-mail: linjp@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈永露
吴绵斌
林建平
杨立荣
岑沛霖

引用本文:

陈永露, 吴绵斌, 林建平, 杨立荣, 岑沛霖. GshF在大肠杆菌中的表达及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(12): 21-28.

CHEN Yong-lu, WU Mian-bin, LIN Jian-ping, YANG Li-rong, CEN Pei-lin. Characterization of GshF Expressed in Escherichia coli. China Biotechnology, 2013, 33(12): 21-28.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I12/21

[1] 朱玉强.发酵法生产谷胱甘肽研究进展.发酵科技通讯, 2008, 37(2):22-26. Zhu Y Q. The research development of fermentation production of glutathione. Fermentation Science and Technology, 2008, 37 (2): 22-26.
[2] 王小娟, 卢美欢, 王卫卫, 等. 高产谷胱甘肽菌株选育研究进展.中国酿造, 2011, (5): 5-7. Wang X J, Lu M H, Wang W W, et al. The research development of glutathione yield strain.China Brewing 2011, (5): 5-7.
[3] Sakuda S, Zhou Z Y, Yamada Y. Structure of a novel disulfide of 2-(N-acetylcysteinyl) amido-2-deoxy-alpha-D-glucopyranosyl-myo-inositol produced by Streptomyces sp. Biosci Biotechnology and Biochemistry, 1994, 58: 1347-1348.
[4] 刘振玉.谷胱甘肽的研究与应用.生命的化学, 1995, 15(1):19-21. Liu Z Y. The Research and application of glutathione. Chemistry of Life, 1995, 15 (1): 19-21.
[5] Shelly C L. Regulation of glutathione synthesis. Molecular Aspects of Medicine, 2009, 30(1-2): 42-59.
[6] Masi P L, Veeravalli K, Georgiou G, et al. The many faces of glutathione in bacteria. Antioxidants and Redox Signaling, 2006, 8 (5-6): 753-762.
[7] Liao X Y, Shen W, Chen J, et al. Improved glutathione production by gene expression in Escherichia coli. Letters in Applied Microbiology, 2006, 43(2): 211-214.
[8] Li W, Li Z M, Ye Q. Enzymatic synthesis of glutathione using yeast cells in two-stage. Reaction. Bioprocess and Biosystems Engineering, 2010, 33: 675-682.
[9] Newton G L, Arnold K, Price M S, et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. Journal of Bacteriology, 1996, 178: 1990-1995.
[10] Fahey R C, Brown W C, Adams W B, et al. Occurrence of glutathione in bacteria. Journal of Bacteriology, 1978, 133: 1126-1129.
[11] Janowiak B E, Griffith O W. Glutathione synthesis in Streptococcus agalactiae—One protein accounts for gamma-glutamylcysteine synthetase and glutathione synthetase activities. Journal of Biological Chemistry, 2005, 280 (12): 11829-11839.
[12] Gopal S I, Borovok I, Ofer A, et al. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. Journal of Bacteriology, 2005, 187 (11): 3839-3847.
[13] Vergauwen B D, Vos D D, Beeumen J V, et al. Characterization of the bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. Journal of Biological Chemistry, 2006, 281 (7): 4380-4394.
[14] Li W, Li Z M, Yang J H, et al. Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. Journal of Biotechnology, 2011, 154 (4): 261-268.
[15] 刘云平.三种重要检测用酶的重组表达及酶学特性研究.浙江大学硕士学位论文, 2012.24-25. Liu Y P. Studies on recombinant expression and enzymatical characteristics of three improtant enzymes for analytical applications. Master's Degree Thesis of Zhejiang University, 2012. 24-25.
[16] Nuc P, Nuc K. Recombinant protein production in Escherichia coli. Postepy Biochem, 2006, 52: 44-84.
[17] Tabor S, Richardson C C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proceedings of the National Academy of Sciences of USA, 1985, 82: 1074-1078.
[18] Liedschulte V A, Wachter A, An Z G, et al. Exploiting plants for glutathione (GSH) production: Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnology Journal, 2010, 8 (7): 807-820.
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[4] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[5] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[6] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[7] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[8] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[9] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[10] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[11] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[12] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[13] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[14] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[15] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.