Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 77-84    DOI: 10.13523/j.cb.20151111
综述     
CRISPR/Cas9基因组编辑技术的研究进展及其应用
蒲强1, 罗嘉1, 沈林園1, 李强2, 张谊3, 张顺华1, 朱砺1
1. 四川农业大学动物科技学院 成都 611130;
2. 四川省畜牧总站 成都 610041;
3. 西昌学院动物科学学院 西昌 615013
The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique
PU Qiang1, LUO Jia1, SHEN Lin-yuan1, LI Qiang2, ZHANG Yi3, ZHANG Shun-hua1, ZHU Li1
1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
2. Sichuan Province General Station of Animal Husbandry, Chengdu 610041, China;
3. Department of Animal Science, Xichang College, Xichang 615013, China
 全文: PDF(706 KB)   HTML
摘要:

随着测序技术的不断进步,获得了越来越多物种的全基因组序列。面对这些海量的基因组数据,基因定点编辑技术是高效捕获目标基因、迅速获得基因功能和应用信息的重要研究手段。CRISPR/Cas9是目前最有效的一种基因定点编辑技术。CRISPR/Cas9系统(clustered regularly interspaced short palindromic repeats/CRISPR-associated)是广泛存在于细菌及古生菌中的,由细菌体长期进化而形成,能够降解入侵病毒或噬菌体DNA的适应性免疫系统。因此,对CRISPR/Cas9系统的发展、应用,以其在相关研究中的应用前景进行阐述显得尤为必要。

关键词: CRISPR/Cas9基因编辑基因功能    
Abstract:

Along with the dramatic advances in sequencing technology, whole genome sequences of more and more species have obtained. Faced with such a status, site-directed genome editing technique has been adapted as an efficient gene-targeting technology to obtain the gene function and application information. CRISPR/Cas9 is the most effective editing technique by far. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) refers to an adaptive immune system that is gained from the long-term evolution of the organism which is widespread in bacteria and archaea. The characteristics and development, as well as the application prospect of the technique are summarizzed.

Key words: Gene function    CRISPR/Cas9    Genome editing
收稿日期: 2015-06-08 出版日期: 2015-11-24
ZTFLH:  Q789  
基金资助:

四川省科技支撑计划(2013NZ0041),国家科技支撑计划(2013BAD20B07),四川省科技富民强县专项行动计划资助项目

通讯作者: 张顺华, 朱砺     E-mail: 363445986@qq.com;zhuli7508@163.com
作者简介: 蒲强, 罗嘉
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒲强
罗嘉
沈林園
李强
张谊
张顺华
朱砺

引用本文:

蒲强, 罗嘉, 沈林園, 李强, 张谊, 张顺华, 朱砺. CRISPR/Cas9基因组编辑技术的研究进展及其应用[J]. 中国生物工程杂志, 2015, 35(11): 77-84.

PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique. China Biotechnology, 2015, 35(11): 77-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151111        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/77

[1] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433.
[2] Wei C, Liu J, Yu Z, et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics, 2013, 40(6): 281-289.
[3] Jansen R, Embden J, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575.
[4] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3): 653-663.
[5] Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8): 2551-2561.
[6] Mojica F J, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2): 174-182.
[7] Quiberoni A, Moineau S, Rousseau G M, et al. Streptococcus thermophilus bacteriophages. International Dairy Journal, 2010, 20(10): 657-664.
[8] Horvath P, Romero D A, Coûté-Monvoisin A C, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology, 2008, 190(4): 1401-1412.
[9] Horvath P, Coûté-Monvoisin A C, Romero D A, et al. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology, 2009, 131(1): 62-70.
[10] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
[11] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 2012, 109(39): E2579-E2586.
[12] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[13] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[14] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347-355.
[15] Karginov F V, Hannon G J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Molecular Cell, 2010, 37(1): 7-19.
[16] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096.
[17] Westra E R, Swarts D C, Staals R H, et al. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annual Review of Genetics, 2012, 46: 311-339.
[18] Jinek M, Jiang F, Taylor D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997.
[19] Deveau H, Barrangou R, Garneau J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 2008, 190(4): 1390-1400.
[20] Nishimasu H, Ran F A, Hsu P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949.
[21] Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3): 230-232.
[22] Sternberg S H, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490): 62-67.
[23] Zhu S, Rong Z, Lu X, et al. Gene targeting via homologous recombination in monkey embryonic stem cells using CRISPR/Cas9 system. Stem Cells and Development, 2015, 4(10):1147-1149.
[24] Bauer D E, Canver M C, Orkin S H. Generation of genomic deletions in mammalian cell Lines via CRISPR/Cas9. Journal of Visualized Experiments, 2015, (95): e52118-e52118.
[25] Osborn M J, Gabriel R, Webber B R, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 2014, 26(2):114-126.
[26] Mandal P K, Ferreira L M, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15(5): 643-652.
[27] Belhaj K. Editing plant genomes with CRISPR/Cas9. Open Access Overview.[2014-11-29]. http://www.sciencedirect.com/science/article/pii/S0958166914001943.
[28] Fan Z, Li W, Lee SR et al. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One, 2014, 9(10): e109755.
[29] Kimura Y. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Open Access Overview.[2014-10-8]. http://www.nature.com/articles/srep06545?WT.ec_id=SREP-631-20141014.
[30] Smith C, Gore A, Yan W, et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 2014, 15(1): 12-13.
[31] Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826.
[32] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[33] Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9): 839-843.
[34] Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 2014, 11(4): 399-402.
[35] Duan J, Lu G, Xie Z, et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Research, 2014, 24(8): 1009-1012.
[36] Veres A, Gosis B S, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 2014, 15(1): 27-30.
[37] Suzuki K, Yu C, Qu J, et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell, 2014, 15(1): 31-36.
[38] Cradick T J, Fine E J, Antico C J, et al. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research, 2013,43(18):1093.
[39] Bell C C, Magor G W, Gillinder K R, et al. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics, 2014, 15(1): 1002.
[40] Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12(6): 797-807.
[41] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2): 142-147.
[42] Crosetto N, Mitra A, Silva M J, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nature Methods, 2013, 10(4): 361-365.
[43] Tsai S Q, Zheng Z, Nguyen N T, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015,33(2):187-197.
[44] Larson M H, Gilbert L A, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8(11): 2180-2196.
[45] Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 2013, 10(10): 973-976.
[46] Maeder M L, Linder S J, Cascio V M, et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013, 10(10): 977-979.
[47] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
[48] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451.
[49] Zhou Y, Zhu S, Cai C et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501): 487-491.
[50] Tanenbaum M E, Gilbert L A, Qi L S, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 2014, 159(3): 635-646.
[51] Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3): 647-661.
[52] Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 2011, 475(7354): 101-105.
[53] Berger M F, Hodis E, Heffernan T P, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature, 2012, 485(7399): 502-506.
[54] Quesada V, Conde L, Villamor N, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genetics, 2012, 44(1): 47-52.
[55] Savitskaya E, Semenova E, Dedkov V, et al. High-throughput analysis of type IE CRISPR/Cas spacer acquisition in E. coli. RNA Biology, 2013, 10(5): 716-725.
[56] Richter H, Zoephel J, Schermuly J, et al. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Research, 2012, 40(19): 9887-9896.

[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[4] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[5] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[6] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[7] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[8] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[9] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[10] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[11] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[12] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[13] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[14] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[15] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.