Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (07): 133-138    
综述     
大豆异黄酮生物合成关键酶及其代谢工程研究进展
陈宣钦, 张乐, 徐慧妮, 陈丽梅, 李昆志
昆明理工大学生物工程技术研究中心 昆明 650500
Key Enzymes in Soybean Isoflavones Biosynthesis and Its Metabolic Engineering
CHEN Xuan-qin, ZHANG Le, XU Hui-ni, CHEN Li-mei, LI Kun-zhi
Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(568 KB)   HTML
摘要: 异黄酮是一类具有C-6/C-3/C-6骨架的二次代谢产物,具有抗氧化和抗肿瘤活性。异黄酮与黄酮类物质具有相似的苯丙烷生物合成途径。天然的绝大部分异黄酮分布在豆科植物中,目前在大豆中已经发现了超过12个异黄酮(苷)。大豆异黄酮的生物合成主要涉及三个关键的酶查尔酮合酶(CHS)、查尔酮异构酶(CHI)和异黄酮合酶(IFS)。总结了大豆异黄酮的提取分离方法和生物合成途径,着重综述了CHI、CHS、IFS生物学特征和功能及异黄酮的代谢工程研究。
关键词: 大豆异黄酮CHICHSIFS代谢工程    
Abstract: Isoflavones were one class of secondary metabolites with C-6/C-3/C-6 skeleton, which possessed anti-oxidant and anti-tumor activities. Isoflavones and flavonoids had similar phenylpropanoid biosynthetic pathway. The majority of natural isoflavones occurred in leguminous plants. At present, more than 12 isoflavones were identified in soybean. The biosynthesis of soybean isoflvones mainly involved three key enzymes, which are CHS (chalcone synthase), CHI (chalcone isomerase), and IFS (isoflavone synthase). summarized The extraction and isolation methods and biosynthesis pathway of soybean isoflavones were summarized, and emphatically reviewed the biological characteristic and functions of CHI, CHS, and IFS as well as isoflovnes metabolic engineering were emphatically reviewed.
Key words: Soybean isoflavone    CHI    CHS    IFS    Metabolic engineering
收稿日期: 2011-12-02 出版日期: 2012-07-25
ZTFLH:  Q814  
基金资助: 云南省自然科学基金(KKSA201126058);国家自然科学基金(31060258)资助项目
通讯作者: 李昆志     E-mail: likunzhikm@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈宣钦
张乐
徐慧妮
陈丽梅
李昆志

引用本文:

陈宣钦, 张乐, 徐慧妮, 陈丽梅, 李昆志. 大豆异黄酮生物合成关键酶及其代谢工程研究进展[J]. 中国生物工程杂志, 2012, 32(07): 133-138.

CHEN Xuan-qin, ZHANG Le, XU Hui-ni, CHEN Li-mei, LI Kun-zhi. Key Enzymes in Soybean Isoflavones Biosynthesis and Its Metabolic Engineering. China Biotechnology, 2012, 32(07): 133-138.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I07/133

[1] Xu B, Chang, S K C. Characterization of phenolic substances and antioxidant properties of food soybeans grown in North Dakota-Minnesota Region. J Agric Food Chem, 2008, 56: 9102-9113.
[2] Peterson A, Schnell J D, Kubas K L, et a1. Effects of soy isoflavone consumption on bone structure and milk mineral concentration in a rat model of lactation associated bone loss. Eur J Nutr, 2009, 48: 84-91.
[3] Li S H, Liu X X, Bai Y Y, et a1. Effect of oral isoflavone supplementation on vascular endothelial function in postmenopausal women: a meta analysis of randomized placebo-controlled trials. Am J Clin Nutr, 2010, 91: 480-486.
[4] Ward H A, Kuhnle G G, Mulligan A A, et a1. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into cancer and nutrition-norfolk in relation to phytoestregen intake derived from an improved database. Am J Clin Nutr, 2010, 91: 440-448.
[5] Xu W H, Zhang W, Xiang Y B, et a1. Soya food intake and risk of endometrial cancer among Chinese women in Shanghai: population based case-control study. B M J, 2004, 328: 1285-l289.
[6] Rochfort S, Panozzo J. Phytochemicals for health, the role of pulses. J Agric Food Chem, 2007, 55: 7381-7994.
[7] De RE, Aardenburg L, Van D J, et al. Changed isoflavone levels in red clover (Trifolium pratense L) leaves with disturbed root nodulation in response to waterlogging. J Chem Ecol, 2005, 31:1285-1298.
[8] 张博坤, 王文广, 殷广明, 等. 大豆异黄酮提取新工艺的研究,大豆科技,2009, 4: 61-64. Zhang B K, Wang W G, Yin G M, et al. Extraction process of soybean isoflavone. Soybean Science & Technology, 2009, 4: 61-64.
[9] Dhaubhadel S. Regulation of isoflavonoid biosynthesis in soybean seeds. Soybean -Biochemistry, Chemistry and Physiology, 2011, 15, 243-258.
[10] Du H, Huang Y B, Tan Y X. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol, 2010, 86: 1293-1312.
[11] Tuteja J H, Clough S J, Chan W C, et al. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell, 2004, 16: 819-835.
[12] Luczkiewicz M, Glod D. Callus culture of Genista plants in vitro material producing high amounts of isoflavones of phytoestrogenic activity. Plant Sci, 2003, 165: 1101-1108.
[13] Arthur J M. Radiation and anthocyanin pigments in: Biological Effects of Radiation. Duggan B M ed. NewYork: McGraw HiIl, 1936: 1109-1118.
[14] Thain S C, Murtas G, Lynn J R, et a1. The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol, 2002, 130: 102-110.
[15] Leyva A, Jarillo J A, Salinas J, et a1. Low temperature induces the accumulation of Phenylalanine Ammonia-Lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light—dependent manner. Plant Physiol, 1995, 108: 39-46.
[16] Kaneko M, Itoh H, Inukai Y. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J, 2003, 35: 104-115.
[17] Grotewold E, Peterson T. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol Gen Genet, 1994, 242: 1-8.
[18] 张党权,谭晓风,王晓红. 查尔酮合酶与查尔酮异构酶基因特征及转基因应用, 中南林业科技大学学报,2007,27:87-91. Zhang D Q, Tan X F, Wang X H. Gene Characteristics and transgenic application of chalcone synthase and chalcone isomerase. Journal of Central South University of Forestry& Technology, 2007,27:87-91.
[19] Verhoeyen M E, Bovy A, Collins G, et a1. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot, 2002, 53: 2099-2106.
[20] Lukaszewicz M, Matysiak-Kata I, Skala J, et a1. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem, 2004, 52: 1526-1533.
[21] Shimada N, Aoki T, Sato S, et a1. A cluster of genes encodes the two types of chaleone isomerase involved in the biosynthesis of general falavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicas. Plant Physiol, 2003, 131: 941-951.
[22] Mehdy M C, Lamb C J. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J, 1987 6: 1527-1533.
[23] Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol, 1994, 24: 743-755.
[24] Ralston L, Subramanian S, Matsuno M, et al. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol, 2005, 137: 1375-1388.
[25] Kim H B, Bae J H, Lim J D, et al. Expression of a functional type-I chalcone isomerase gene is localized to the infected cells of root nodules of Elaeagnus umbellate. Mol Cells, 2007, 23: 405-409.
[26] Jez J M, Bowman M E, Dixon R A. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Natural Structural Biology, 2000, 7: 786-791.
[27] Tunen A J V, Koes R E, Mol J N M, et a1. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrid: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J, 1988, 7: 1257-1263.
[28] Muir S, Collins G, Robinson S, et a1.Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols.J Nature bioteehnology,2001, l9: 470-474.
[29] Steele C L, Gijzen M, Qutob D, et al. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys, 1999, 367:146-150.
[30] Jung W, Yu O, Lau S C, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech, 2000, 18: 208-212.
[31] Dhaubhadel S, McGarvey B D, Williams R, et al. Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol, 2003, 53: 733-743.
[32] Yu O, Jung W, Shi J, et al. Production of the isoflavones genestein and daidzein in non-legume dicot and monocot tissues. Plant Physiol, 2000, 124: 781-793.
[33] Liu C, Blount J W, Steele C L, et al. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. P N A S, 2002, 99: 14578-14583.
[34] Yu O, Shi J, Hession A O, et al. Metabolic engineering to increase isoflavone biosynthesis in soybean seeds. Phytochemistry, 2003, 63: 753-763.
[35] Bruce W, Folkerts O, Garnaat C, et al. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell, 2000, 12: 65-80.
[36] Kim D H, Kim B G, Lee Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol, 2005 119: 155-162.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[6] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[7] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[8] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[9] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[10] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[11] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[12] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[13] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.
[14] 高翠娟, 连思琪, 祁庆生. 代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯[J]. 中国生物工程杂志, 2016, 36(5): 53-58.
[15] 梁欣泉, 李宁, 任勤, 刘继栋. 代谢工程改造酿酒酵母生产L-乳酸的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 109-114.