Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (2): 109-114    DOI: 10.13523/j.cb.20160216
综述     
代谢工程改造酿酒酵母生产L-乳酸的研究进展
梁欣泉, 李宁, 任勤, 刘继栋
广西大学轻工与食品工程学院 南宁 530004
Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production
LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong
Light Industry and Food Engineering College, Guangxi University, Nanning 530004, China
 全文: PDF(440 KB)   HTML
摘要:

L-乳酸是一种重要的有机化合物,具有广泛的应用价值。微生物发酵法生产是当前L-乳酸的主要来源,但受限于精确的发酵条件、菌体产物耐受能力低及底物要求高等因素,导致L-乳酸供给不足且价格偏高。鉴于酿酒酵母利用廉价底物生产有价值物质方面的诸多优势,并随着分子生物学技术的发展,利用代谢工程改造酿酒酵母本身固有的代谢网络,使其高产L-乳酸已成为当前研究的热点。从L-乳酸的异源生产、关键途径改造及菌体生长能力恢复三个方面归纳了关于代谢工程改造酿酒酵母生产L-乳酸的研究进展。最后,指出了酿酒酵母异源生产L-乳酸存在的不足和今后研究的方向。

关键词: L-乳酸酿酒酵母代谢工程改造    
Abstract:

L-lactic acid is one of the key metabolites of microorganism, and has an extensive application value. To date, microbial origins L-lactic acid contribute to the main source of this compound, whereas it is restricted by precise fermentation control, relative low bacterial product tolerance and high substrate requirements, and therefore resulted in L-lactic acid supply deficiency and a higher price. Due to the advantages of Saccharomyces cerevisiae in the production of valuable products with cheap substrate, along with the development of molecular biology technology, more attention has been attracted on the metabolic engineering of S. cerevisiae for higher production of L-lactic acid. Recent research progresses in the production of L-lactic acid in Saccharomyces cerevisiae, including the accumulation of L-lactic acid, the improving of lactate production and cell productivity were presented. Finally, the limitation of current progress and proposed the future research needs for microbial production of L-lactic acid were also discussed.

Key words: Saccharomyces cerevisiae    Metabolic engineering    L-lactic acid
收稿日期: 2015-09-11 出版日期: 2015-11-19
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31460026)、广西教育厅科研基金(ZS2014001)资助项目

通讯作者: 刘继栋     E-mail: liuan6126@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁欣泉
李宁
任勤
刘继栋

引用本文:

梁欣泉, 李宁, 任勤, 刘继栋. 代谢工程改造酿酒酵母生产L-乳酸的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 109-114.

LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production. China Biotechnology, 2016, 36(2): 109-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160216        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I2/109

[1] Nduko J M,Matsumoto K,Ooi T,et al. Enhanced production of poly(lactate-co-3-hydroxybutyrate) from xylose in engineered Escherichia coli overexpressing a galactitol transporter. Applied Microbiology and Biotechnology,2014,98(6):2453-2460.
[2] Taskila S,Ojamo H. The current status and future expectations in industrial production of lactic acid by lactic acid bacteria. In:Kongo M,ed. Lactic Acid Bacteria-R&D for Food,Health and Livestock Purposes. Rijeka,Croatia:Tech Open Access Publisher,2013.615-632.
[3] Abdel-Rahman M A,Tashiro Y,Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances,2013,31(6):877-902.
[4] Maki-Arvela P,Simakova I L,Salmi T,et al. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chemical Reviews,2014,114(3):1909-1971.
[5] Martinez F,Balciunas E M. Lactic acid properties,applications and production:a review. Trends in Food Science & Technology,2013,30(1):70-83.
[6] 赵亮亮. 代谢工程改造酿酒酵母生产L-乳酸. 无锡:江南大学,2011. Zhao L L. The reconstruction of Saccharomyces cerevisiae by metabolic engineering to product L-lactic acid. Wuxi:Jiangnan University,2011.
[7] Upadhyaya B P,DeVeaux L C,Christopher L P. Metabolic engineering as a tool for enhanced lactic acid production. Trends in Biotechnology,2014,32(12):637-644.
[8] Su J,Wang T,Wang Y,et al. The use of lactic acid-producing,malic acid-producing,or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Applied Microbiology and Biotechnology,2014,98(6):2395-2413.
[9] Kavšcek M,Stra?ar M,Curk T,et al. Yeast as a cell factory:current state and perspectives. Microbial Cell Factories,2015,14(1):1-10.
[10] Dequin S. Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology,1994,12:173-177.
[11] Porro D,Brambilla L,Ranzi B M,et al. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnology Progress,1995,11(3):294-298.
[12] Colombie S,Dequin S,Sablayrolles J M. Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene. Enzyme and Microbial Technology,2003,33(1):38-46.
[13] Koivistoinen O M,Kuivanen J,Barth D,et al. Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microbial Cell Factories,2013,12(6):839-850.
[14] Adachi E,Torigoe M,Sugiyama M,et al. Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. Journal of Fermentation and Bioengineering,1998,86(3):284-289.
[15] Ishida N,Saitoh S,Tokuhiro K,et al. Efficient production of L-lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Applied and Environmental Microbiology,2005,71(4):1964-1970.
[16] Ishida N,Suzuki T,Tokuhiro K,et al. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering,2006,101(2):172-177.
[17] Saitoh S,Ishida N,Onishi T,et al. Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Applied and Environmental Microbiology,2005,71(5):2789-2792.
[18] Ishida N,Saitoh S,Ohnishi T,et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)-lactic acid. Applied Biochemistry and Biotechnology,2006,131(1-3):795-807.
[19] Ishida N,Saitoh S,Onishi T,et al. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Bioscience Biotechnology and Biochemistry,2006,70(5):1148-1153.
[20] Nagamori E,Shimizu K,Fujita H,et al. Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Bioprocess and Biosystems Engineering,2013,36(9):1261-1265.
[21] Ida Y,Furusawa C,Hirasawa T,et al. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering,2012,113(2):192-195.
[22] Skory C D. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. Journal of Industrial Microbiology & Biotechnology,2003,30(1):22-27.
[23] Li X W,Guo D Y,Cheng Y B,et al. Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering,2014,111(9):1841-1852.
[24] Tokuhiro K,Ishida N,Nagamori E,et al. Double mutation of the pdc1 and adh1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Applied Microbiology and Biotechnology,2009,82(5):883-890.
[25] Bianchi M M,Brambilla L,Protani F,et al. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous ldh gene. Applied and Environmental Microbiology,2001,67(12):5621-5625.
[26] Kozak B U,van Rossum H M,Benjamin K R,et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Engineering,2014,21:46-59.
[27] Flikweert M T,vanDijken J P,Pronk J T. Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess. Applied and Environmental Microbiology,1997,63(9):3399-3404.
[28] Shiba Y,Paradise E M,Kirby J,et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering,2007,9(2):160-168.
[29] Lian J Z,Si T,Nair N U,et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering,2014,24:139-149.
[30] Ida Y,Hirasawa T,Furusawa C,et al. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology,2013,97(11):4811-4819.
[31] Heux S,Cachon R,Dequin S. Cofactor engineering in Saccharomyces cerevisiae:expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metabolic Engineering,2006,8(4):303-314.
[32] Vemuri G N,Eiteman M A,McEwen J E,et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America,2007,104(7):2402-2407.
[33] Wang Z K,Gao C J,Wang Q,et al. Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochemical Engineering Journal,2012,67:126-131.
[34] Hou J,Suo F,Wang C Q,et al. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnology,2014,14(4):452-457.
[35] Branduardi P,Sauer M,De Gioia L,et al. Lactate production yield from engineered yeasts is dependent from the host background,the lactate dehydrogenase source and the lactate export. Microbial Cell Factories,2006,5(1):107-109.
[36] Casal M,Paiva S,Andrade R P,et al. The lactate-proton symport of Saccharomyces cerevisiae is encoded by jen1. Journal of Bacteriology,1999,181(8):2620-2623.
[37] van Maris A J A,Winkler A A,Porro D,et al. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae:possible consequence of energy-dependent lactate export. Applied and Environmental Microbiology,2004,70(5):2898-2905.
[38] Pacheco A,Talaia G,Sa-Pessoa J,et al. Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Research,2012,12(3):375-381.
[39] Wakamatsu M,Tomitaka M,Tani T,et al. Improvement of ethanol production from D-lactic acid by constitutive expression of lactate transporter Jen1p in Saccharomyces cerevisiae. Bioscience Biotechnology and Biochemistry,2013,77(5):1114-1116.
[40] Skory C D,Hector R E,Gorsich S W,et al. Analysis of a functional lactate permease in the fungus Rhizopus. Enzyme and Microbial Technology,2010,46(1):43-50.
[41] Pfleger B F,Gossing M,Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering,2015,29:1-11.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[6] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[7] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[8] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[9] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[10] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[11] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[12] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[13] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[14] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[15] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.