Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 53-58    DOI: 10.13523/j.cb.20160508
研究报告     
代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯
高翠娟1,2,3, 连思琪2, 祁庆生3
1. 临沂大学生命科学学院 临沂 276000;
2. 香港城市大学环境工程学院 香港 999077;
3. 山东大学微生物技术国家重点实验室 济南 250100
Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering
GAO Cui-juan1,2,3, LIN Carol Sze-ki2, QI Qing-sheng3
1. School of Life Science, Linyi University, Linyi 276000, China;
2. School of Energy and Environment, City University of Hong Kong, Kowloon 999077, China;
3. State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
 全文: PDF(573 KB)   HTML
摘要:

中长链聚羟基脂肪酸酯(mcl-PHA)是一大类由微生物合成的天然生物聚酯,因具有可再生性和生物降解性越来越受到人们的关注。Mcl-PHA可由一些假单胞菌类利用自身的脂肪酸合成途径或β-氧化途径来合成。耶氏解脂酵母具有很好的脂/脂肪酸分解代谢能力,但是它体内缺乏PHA合成酶不能合成mcl-PHA。采用代谢工程策略构建重组解脂酵母,外源表达来自铜绿假单胞菌PAO1(Pseudomonas aeruginosa PAO1)的PHA合成酶。在PHA合成酶的C端添加PTS1过氧化物酶体定位信号序列,使其在过氧化物酶体内发挥功能,并对其编码基因PhaC1进行密码子优化得到oPhaC1。利用pINA1312载体构建表达框,借助载体上的zeta序列元件将oPhaC1基因表达框整合至酵母基因组,完成基因的稳定表达。重组菌PSOC在葡萄糖为唯一碳源的培养基中几乎不产PHA,添加0.5%的油酸时可合成占细胞干重0.67%的mcl-PHA。在含三油酸甘油酯的培养基中发酵72h产生1.51% mcl-PHA(wt%)。实验结果充分证明重组解脂酵母作为有潜力的微生物细胞工厂可以用于生产mcl-PHA,也为将来利用富含油脂和其他营养的餐厨垃圾水解液等廉价资源生产mcl-PHA打下基础。

关键词: 代谢工程mcl-PHAPHA合成酶重组耶氏解脂酵母    
Abstract:

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, a genetically modified strain of Y. lipolytica was constructed by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 encoding PHA synthase with a peroxisomal signal (PTS1) at the C terminal. The gene was coden optimized and linked onto the vector of pINA1312 to construct pINA1312-oPHA. The expression cassette derived from pINA1312-oPHA was integrated onto the genome randomly through zeta element above the vector resulting strain PSOC. The recombinant yeast of PSOC barely produced mcl-PHA when grew in YPD, but can produce 0.67% DCW of PHA after 72 cultivation in YPD medium containing 0.5% oleic acid. Furthermore, when PSOC was grown in the medium containing triolein, PHA accumulated up to 1.51% DCW. It successfully demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for mcl-PHA production, which laid the foundation for using food waste that contains lipids and other essential nutrients to produce mcl-PHA.

Key words: Metabolic engineering    Medium-chain-length polyhydroxyalkanoates    Recombinant Yarrowia lipolytica    PHA synthase
收稿日期: 2016-01-05 出版日期: 2016-03-02
ZTFLH:  Q939.97  
基金资助:

山东省优秀中青年科学家科研奖励基金(BS2012SW004),香港研究基金委员会资助项目

通讯作者: 祁庆生     E-mail: qiqingsheng@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高翠娟
连思琪
祁庆生

引用本文:

高翠娟, 连思琪, 祁庆生. 代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯[J]. 中国生物工程杂志, 2016, 36(5): 53-58.

GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering. China Biotechnology, 2016, 36(5): 53-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160508        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/53

[1] Wang Q, Luan Y Q, Cheng X L, et al. Engineering of Escherichia coli for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose. Appl Microbiol Biotechnol, 2015, 99(6):2593-2602.
[2] Hazer B, Steinbuchel A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol, 2007, 74(1):1-12.
[3] Gao X, Chen J C, Wu Q, et al. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol, 2011, 22(6):768-774.
[4] Wang Q, Tappel R C, Zhu C, et al. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol, 2012, 78(2):519-527.
[5] Wang Q, Zhuang Q Q, Liang Q F, et al. Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97(8):3301-3307.
[6] Haddouche R, Poirier Y, Delessert S, et al. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the β-oxidation multifunctional protein. Appl Microbiol Biotechnol, 2011, 91(5):1327-1340.
[7] Zhuang Q Q, Wang Q, Liang Q F, et al. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid beta-oxidation cycle in Escherichia coli. Metab Eng, 2014, 24:78-86.
[8] Langenbach S, Rehm B H, Steinbüchel A. Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett, 1997, 150(2):303-309.
[9] Poirier Y, Erard N, Petetot J M. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol, 2001, 67(11):5254-5260.
[10] Zhang B, Carlson R, Srienc F. Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol, 2006, 72(1):536-543.
[11] Dulermo T, Nicaud J M. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng, 2011, 13(5):482-491.
[12] Groguenin A. Genetic engineering of the β-oxidation pathway in the yeast Yarrowia lipolytica to increase the production of aroma compounds. Journal of Molecular Catalysis B: Enzymatic, 2004, 28:75-79.
[13] Gardini F, Suzzi G, Lombardi A, et al. A survey of yeasts in traditional sausages of southern Italy. FEMS Yeast Research, 2001, 1(2):161-167.
[14] Xue Z, Sharpe P L, Hong S P, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol, 2013, 31(8):734-740.
[15] Beopoulos A, Verbeke J, Bordes F, et al. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol, 2014, 98(1):251-262.
[16] Zhang B X, Rong C C, Chen H Q, et al. De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microb Cell Fact, 2012, 11:51-58.
[17] Zhang B X, Chen H Q, Li M, et al. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Fact, 2013, 12:70-71.
[18] Haddouche R, Delessert S, Sabirova J, et al. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards beta-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res, 2010, 10(7):917-927.
[19] Fickers P, Marty A, Nicaud J M. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv, 2011, 29(6):632-644.
[20] Madzak C, Gaillardin C, Beckerich J M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol, 2004, 109(1):63-81.
[21] Marchesini S, Poirier Y. Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae. J Biol Chem, 2003, 278(35):32596-32601.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[6] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[7] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[8] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[9] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[10] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[11] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[12] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.
[13] 梁欣泉, 李宁, 任勤, 刘继栋. 代谢工程改造酿酒酵母生产L-乳酸的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 109-114.
[14] 房立霞, 曹英秀, 宋浩. 工程大肠杆菌合成游离脂肪酸的研究进展[J]. 中国生物工程杂志, 2016, 36(11): 90-97.
[15] 王永成, 陈涛, 石婷, 王智文, 赵学明. 嘌呤核苷及其衍生物的代谢工程[J]. 中国生物工程杂志, 2015, 35(5): 87-95.