Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (9): 94-100    DOI: 10.13523/j.cb.20160912
综述     
米曲霉外源表达系统研究进展
于潇淳1, 马世良2
1 沈阳农业大学食品学院 沈阳 110161;
2 沈阳农业大学生物科学技术学院 沈阳 110161
Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression
YU Xiao-chun1, MA Shi-liang2
1 College of Food Science, Shenyang Agricultural University, Shenyang 110161, China;
2 College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110161, China
 全文: PDF(569 KB)   HTML
摘要:

丝状真菌米曲霉是发酵工业的重要菌种,具有强大的蛋白分泌能力和较高的食品安全性,可作为表达外源蛋白的细胞工厂。近年来,米曲霉全基因组序列的测序完成和基于表达序列标签的基因组学研究,为深入研究米曲霉外源表达系统提供了条件。从基因组学进展、遗传转化体系等方面综述了米曲霉作为外源蛋白表达宿主的研究进展。针对米曲霉在外源蛋白表达中存在的瓶颈,提出构建蛋白酶缺陷株、使用强启动子、融合表达等策略,以提高外源蛋白的表达和产量。最后介绍了米曲霉表达系统的应用,利用米曲霉代谢工程菌生产工业用酶和次级代谢产品具有良好的前景。

关键词: 基因组转化系统代谢工程米曲霉外源表达    
Abstract:

Aspergillus oryzae is a very important fungus in the fermentation of traditional foods. Filamentous fungus Aspergillus oryzae has been utilized as a cell factory for heterologous protein production because of its high protein secretory capacity and food-safety properties. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of A. oryzae in biotechnology. The advances in genomics and transformation system which support the idea that A. oryzae is an ideal production hosts was focused. Whereas there are bottlenecks during heterologous proteins production in A. oryzae compared to high yields of homologous proteins. The strategies for improving heterologous protein production such as disruption of local gene, promoter and fusion expression were also discussed. Finally, application and high potential in enzymes and secondary metabolite production of the engineering A. oryzae were also reviewed.

Key words: Genomics    Aspergillus oryzae    Transformation system    Metabolic engineering    Heterologous expression
收稿日期: 2016-02-26 出版日期: 2016-09-25
ZTFLH:  Q815  
基金资助:

辽宁省十百千高端人才引进项目百人层次基金资助项目(521082403-880303-88030312004)

通讯作者: 马世良     E-mail: msl@syau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.

YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression. China Biotechnology, 2016, 36(9): 94-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160912        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I9/94

[1] Abe K, Gomi K, Hasegawa F, et al. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia,2006, 162(3):143-153.
[2] Cristiane A U, Gaku T, Hirofumi W, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol, 2011,89(6):1761-1771.
[3] Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem, 2007,71(3):646-670.
[4] Vongsangnak W, Olsen P, Hansen K, et al. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics, 2008,9(1):245-258.
[5] Nguyen C H, Tsurumizu R, Sato T, et al. Taka-amylase A in the conidia of Aspergillus oryzae RIB40. Biosci. Biotechnol. Biochem, 2005,69(11):2035-2041.
[6] Liang Y, Pan L, Lin Y. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem, 2009,73(1):192-195.
[7] Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene. Agric Biol Chem,1987,51(9):2549-2555.
[8] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005,438(7071):1157-1161.
[9] Cherry J M, Ball C, Weng S, et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature, 1997, 387(6632):67-73.
[10] Galagan J E, Calvo S E, Cuomo C, et al. Sequencing of Asperglllus nidulans and comparative analysis with A. fumlgatus and A. oryzae. Nature, 2005, 438(7071):1105-1115.
[11] Nierman W C, Pain A, Anderson M J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438(7071):1151-1156.
[12] Liu L, Feizi A, Osterlund T, et al. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC Systems Biology, 2014,8(1):1-13.
[13] Zhao G, Yao Y, Chen W, et al. Comparison and analysis of the genomes of two Aspergillus oryzae strains. J Agric Food Chem, 2013, 61(32):7805-7809.
[14] Zhao G, Yao Y, Hou L, et al. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042. Biotechnol Lett, 2014,36(10):2053-2058.
[15] 张田, 唐克轩. 丝状真菌的遗传工程研究进展. 上海交通大学学报(农业科学版), 2010, 28(5):481-485. Zhang T, Tang K X. Progress on genetic engineering of filamentous fungi. Journal of Shanghai Jiaotong University (Agriculturay Science), 2010, 28(5):481-485.
[16] Bundock P, Dulk R A, Beijersbergen A G M. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO, 1995, 14(3):3206-3214.
[17] de Groot M J, Bundock P, Hooykaas P J, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol, 1998,16(9):839-842.
[18] Meyer V, Wu B, Ram A F. Aspergillus as a multi-purpose cell factory:current status and perspectives. Biotechnol Lett, 2011, 33(3):469-476.
[19] 李方方, 潘力, 曾沛斌. 酱油工业生产菌沪酿3042基因工程转化体系的构建. 食品工业科技, 2009, 30(6):94-95, 99. Li F F, Pan L, Zeng P B. Construction of genic engineering transforming system of Aspergillus oryzae HuNiang 3042 used in soy sauce industry. Science and Technology of Food Industry, 2009, 30(6):94-95,99.
[20] 王金良, 陈宏文. 米曲霉pyrG基因克隆及其同源转化系统的建立. 食品科学, 2010, 31(11):202-205. Wang J L,Chen H W. PyrG gene cloning and establishment of homologous transformation system for Aspergillus oryzae. Food Science, 2010, 31(11):202-205.
[21] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding alpha-glucosidase. Curr. Genet, 1996,30(5):432-438.
[22] Yamada O, Lee B R, Gomi K. Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotech Bioch, 1997,61(8):1367-1369.
[23] Jin F J, Maruyama J I, Juvvadi P R, et al. Adenine auxotrophic mutants of Aspergillus oryzae:development of a novel transformation system with triple auxotrophic hosts. Biosci Biotech Bioch, 2004,68(3):656-662.
[24] Yoon J, Maruyama J, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol, 2011,89(3) 747-759.
[25] Jin F J, Maruyama J, Juvvadi P R, et al. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in A. oryzae. FEMS Microbiol Lett, 2004,239(1):79-85.
[26] Maruyama J, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DligD) in Aspergillus oryzae. Biotechnol Lett, 2008,30(10):1811-1817.
[27] Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae:cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem, 2000,64(7):1416-1421.
[28] Suzuki S, Tada S, Fukuoka M, et al. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun, 2009, 383(1):42-47.
[29] 张建军, 蔡容华, 李强, 等. 提高蛋白质在米曲霉中表达量的策略. 中国生物工程杂志, 2009, 29(1):111-115. Zhang J J, Cai R H, Li Q, et al. Strategies for prompting the production of proteins in Aspergillus oryzae. China Biotechnology, 2009, 29(1):111-115.
[30] Zhao G, Hou L, Yao Y, et al. Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100-8 strains:towards the production of different soy sauce flavors. Journal of Proteomics, 2012,75(13):3914-3924.
[31] Nakajima K, Sano M, Machida M. Current progress in the analysis of transcriptional regulation in the industrially valuable microorganism Aspergillus oryzae. Biotechnol Bioprocess Eng, 2000,5(4):253-262.
[32] Murphy R A, Power R F. Expression of an α-galactosidase from Saccharomyces cerevisiae in Aspergillus awamori and Aspergillus oryzae. Journal of Industrial Microbiology & Biotechnology, 2002,28(2):97-102.
[33] Zheng X F, Kobayashi Y, Takeuchi M. Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol, 1998, 49(1):39-44.
[34] Jin F, Watanabe T, Juvvadi P, et al. Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol, 2007,76(5):1059-1068.
[35] Yoon J, Kimura S, Maruyama J, et al. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol. 2009, 82(4):691-701.
[36] Gouka R J, Punt P J, van den Hondel C A. Efficient production of secreted proteins by Aspergillus:progress, limitations and prospects. Appl Microbiol Biotechnol, 1997, 47(1):1-11.
[37] Tada S, Gomi K, Kitamoto K, et al. Construction of a fusion gene comprising Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Gen Genet, 1991,229(2):301-306.
[38] Okazaki F, Aoki J, Tabuchi S,et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol, 2012,96(1):81-88.
[39] Maruyama J, Ohnuma H, Yoshikawa A, et al. Production and product quality assessment of human hepatitis B virus Pre-S2 antigen in submerged and solid-state cultures of Aspergihs oryzae. J Biosci Bioeng, 2000, 98(1):118-120.
[40] Uchima C A, Tokuda G, Watanabe H, et al. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Appl Microbiol Biotechnol, 2011, 89(6):1761-1771.
[41] Ishida H, Matsumura K, Hata Y, et al. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control. Appl Microbiol Biotechnol, 2001, 57(1-2):131-137.
[42] Ishida H, Hata Y, Kawato A, et al. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem, 2004, 68(9):1849-1857.
[43] Bando H, Hisada H, Ishida H, et al. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol, 2011, 92(3):561-569.
[44] Tamano K, Bruno K S, Karagiosis S A, et al. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol 2013, 97(1):269-281.
[45] Rashid M H, Javed M R, Kawaguchi T, et al. Improvement of Aspergillus oryzae for hyperproduction of endoglucanase:expression cloning of cmc-1 gene of Aspergillus aculeatus. Biotechnol Lett. 2008, 30(12):2165-2172.
[46] Yamada R, Yoshie T, Wakai S, et al. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microbial Cell Factories, 2014, 13(1):71-78.
[47] 王斌, 潘力, 郭勇. 丝状真菌米曲霉外源基因表达系统的构建. 华南理工大学学报(自然科学版), 2009, 37(6):84-90. Wang B, Pan L, Guo Y. Construction of heterologous gene expression system for filamentous Aspergillus oryzae. Journal of South China University of Technology (NaturalScienceEdition), 2009, 37(6):84-90.
[48] Brown S H, Bashkirova L, Berka R. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol, 2013, 97(20):8903-8912.
[49] Wakai S, Yoshie T, Asai-Nakashima N. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresource Technology, 2014, 173:376-383.
[50] Kitamoto N, Matsui J, Kawai Y, et al. Utilization of the TEF1-a gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol, 1998, 50(1):85-92.
[51] Minetoki T, Kumagai C, Gomi K, et al. Improvement of promoter activity by the introduction of multiple copies of the conserved region Ⅲ sequence, involved in the effcient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol, 1998, 50(4):459-467.
[52] Minetoki T, Nunokawa Y, Gomi K, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding a-glucosidase. Curr Genet, 1996, 30(5):432-438.
[53] Zhou B, Wang C, Wang B, et al. Identification of functional cis-elements required for repression of the Taka-amylase A gene under secretion stress in Aspergillus oryzae. Biotechnol Lett, 2015, 37(12):333-341.
[54] 李方方, 潘力. 米曲霉基因表达研究进展及应用. 中国酿造, 2008, 12:1-3. Li F F, Pan L. The advance of gene expression of Aspergillus oryzae and the application. China Brewing, 2008, 12:1-3.
[55] Ohno A, Maruyama J, Nemoto T, et al. A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae. Appl Microbiol Biotechnol, 2011, 92(92):1197-1206.
[56] Tsuchiya K, Nagashima T, Yamamoto Y, et al. High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem, 1994, 58:895-899.
[57] Sakai K, Kinoshita H, Shimizu T, et al. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J Biosci Bioeng, 2008, 106(5):466-72.
[58] Tamano K, Bruno K S, Karagiosis S A. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Appl Microbiol Biotechnol, 2013, 97(1):269-281.
[59] Knuf C, Nookaew I, Remmers I. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol, 2014, 98(8):3517-3527.
[60] Fleibner A, Dersch P. Expression and export:recombinant protein productionsystems for Aspergillus. Appl Microbiol Biotechnol, 2010, 87(4):1255-1270.
[61] Wang L, Ridgwaya D, Gu T, et al. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv, 2005, 23(2):115-129.
[62] Sharma R, Katoch M, Srivastava P S, et al. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol, 2009, 25(12):2083-2094.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[3] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[4] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[5] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[6] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[7] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[8] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[9] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[10] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[11] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[14] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[15] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.