Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (10): 74-78    
综述     
体外合成朊病毒的研究进展
刘东, 卢士英, 周玉, 宫彬彬, 任洪林, 柳增善
人兽共患病研究教育部重点实验室 吉林大学人兽共患病研究所 畜牧兽医学院 长春 130062
Progress on Prion Synthesis in vitro
LIU Dong, LU Shi-ying, ZHOU Yu, GONG Bin-bin, REN Hong-lin, LIU Zeng-shan
Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
 全文: PDF(381 KB)   HTML
摘要:

朊蛋白疾病是人类和动物中枢神经变性的神经退行性疾病,严重威胁人类的健康。朊病毒(Prion)引发疾病的致病机理尚未十分清楚,常采用体外合成Prion的方法研究其致病机理,但体外研究朊蛋白的主要困难在于建立一个合适的系统模拟体内环境,以便研究正常朊蛋白转化为致病性朊病毒的发病机制。综述了无细胞转化分析,细胞裂解液转化分析,蛋白质错折叠循环扩增,自催化转化分析等至今普遍采用的几种Prion体外合成方法,并讨论了这些方法是否适合用于模拟Prion在体内合成并聚集的过程,为研究朊病毒疾病提供了丰富的研究资源,为深入研究朊蛋白致病性转化提供参考。

关键词: 朊蛋白朊病毒人工表达体外转化    
Abstract:

Prion diseases are neurodegenerative diseases, harmful to animal and human health. Mechanisms of prion diseases are not fully understood. Systems of prion replications in vitro are used to studying prion pathogenesis, however, mock environment in vitro for studying conversion mechanisms from normal cellular prion proteins to disease-associated scrapie prion proteins is relatively difficult and very important. Cell-free conversion assay, cell-lysate conversion assay, Protein Misfolding Cyclic Amplification, Autocatalytic conversion assay, several methods of prion conversion in vitro were described, and discussed them in reflecting prion propagation in vivo, a lot of target samples for studying Prion disease were provided, in order to facilitate to further study prion pathogenesis in the future.

Key words: Cellular prion protein    Prion    Artificial expression    in vitro    Conversion
收稿日期: 2010-06-18 出版日期: 2010-10-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(30871956)资助项目

通讯作者: 任洪林, 柳增善     E-mail: zsliu1959@163.com;renhl@yahoo.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘东
卢士英
周玉
宫彬彬
任洪林
柳增善

引用本文:

刘东, 卢士英, 周玉, 宫彬彬, 任洪林, 柳增善. 体外合成朊病毒的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 74-78.

LIU Dong, LU Shi-ying, ZHOU Yu, GONG Bin-bin, REN Hong-lin, LIU Zeng-shan. Progress on Prion Synthesis in vitro. China Biotechnology, 2010, 30(10): 74-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I10/74


[1] 赵德明.动物传染性海绵状脑病.北京:中国农业大学出版社,2005.58-59. Zhao D M. Animal Transmissible Spongiform Encephalopathies.Beijing: China Agricultural University Press, 2005.58-59.

[2] Raeber A J, Borchelt D R, Scott M, et al. Attemptes to convert the cellular prion protein into the scrapie isoform in cell-free systems. J Virol, 1992,66(10):6155-6163.

[3] Kocisko D A, Come J H, Priola S A, et al. Cell-free formation of protease-resistant prion protein. Nature,1994,370(6489):471-474.

[4] Maxson L, Wong C, Herrmann L M, et al. A solid-phase assay for identification of modulators of prion protein interactions. Anal Biochem, 2003,323(1):54-64.

[5] Kocisko D A, Baron G S, Rubenstein R, et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol, 2003,77(19):10288-10294.

[6] Silverira J R, Raymond G J, Hughson A G, et al. The most infectious prion protein particles. Nature, 2005,437(7056):257-267.

[7] Kirby L, Birkett C R, Rudyk H, et al. In vitro cell-free conversion of bacterial recombinant Pr Pto PrPres as a model for conversion. J Gen Virol, 2000,81(Pt4):2565-2571.

[8] Saborio G P, Soto C, Kascsak R J, et al. Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun, 1999,258(2):470-475.

[9] Saborio G P, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 2001,411(6839):810-813.

[10] Castilla J, Saá P, Morales R, et al. Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol, 2006,412:3-21.

[11] Castilla J, Saá P, Hetz C, et al. In vitro generation of infectious scrapie prions. Cell, 2005,121(2):195-206.

[12] Soto C, Anderes L, Suardi S, et al. Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett, 2005,579(3):638-642.

[13] Lucassen R, Nishina K, Suattapone S. In vitro amplification of protease-resistant prion protein requires free sulfhydryI groups. Biochemistry, 2003,42(14):4127-4135.

[14] Deleault N, Geoghegan J C, Nishina K, et al. Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem, 2005,280(29):26873-26879.

[15] Deleault N R, Harris B T, Rees J R, et al. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA, 2007,104(23):9741-9746.

[16] Geoghegan J C, Valdes PA, Orem N R, et al. Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem, 2007,282(50):34341-36353.

[17] Atarashi R, Moore R A, Sim V L, et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein.Nat Methods, 2007,4(8):645-650.

[18] Atarashi R, Wilham J M, Christensen L, et al. Simplified ultrasensitive prion detection by recombinant Pr Pconversion with shaking. Nat Methods, 2008,5(3):211-212.

[19] Wang F, Wang X, Yuan C G, et al. Generating a prion with bacterially expressed recombinant prion protein. Science, 2010,327(5969):1132-1135.

[20] Baskakov I V, Legname G, Baldwin M A, et al. Pathway complexity of prion protein assembly into amyloid. J Biol Chem. 2002,277(24):21140-21148.

[21] Bocharova O V, Breydo L, Parfenov A S, et al. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrPsc. J Mol Biol, 2005,346(2):645-659.

[22] Baskakov I V. Autocatalytic conversion of recombinant prion proteins displays a species barrier. J Biol Chem. 2004,279(9):7671-7677.

[23] Breydo L, Bocharova O V, Baskakov I V. Semiautomated cell-free conversion of prion protein: Applications for high-throughput screening of potential antiprion drugs. Anal Biochem, 2005,339(1):165-173.

[24] Legname G, Baskakov I V, Nguyen H O, et al. Sythetic mammalian prions. Science, 2004,305(5684):673-676.

[25] Westaway D, DeArmond S J, Cayetano-Canlas J, et al. Degeneration of skeletal muscle,peripheral nerves,and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell, 1994,76(1):117-129.

[1] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[4] 徐安健,李艳萌,乌姗娜,张蓓,姚静怡. PHP14通过与Vimentin相互作用影响TGF-β诱导的肝细胞AML-12上皮-间质转化*[J]. 中国生物工程杂志, 2021, 41(2/3): 1-6.
[5] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[6] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[7] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[8] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[9] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[10] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[11] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[14] 郭义威,王松涛,崔卫刚. 研究miR-219下调TGFBR2影响ENDMT途径抑制急性心肌梗死[J]. 中国生物工程杂志, 2019, 39(4): 8-15.
[15] 王兆官,吴洋,齐浩. 人工合成多样性突变文库研究进展*[J]. 中国生物工程杂志, 2019, 39(11): 113-122.