Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (10): 66-73    
综述     
HIV-1 TAT蛋白转导肽的研究进展
吴永红, 张成岗
军事医学科学院放射与辐射医学研究所 蛋白质组学国家重点实验室 北京 100850
Current Progress on the HIV-1 TAT Protein Transduction Peptide
WU Yong-hong, ZHANG Cheng-gang
Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
 全文: PDF(713 KB)   HTML
摘要:

TAT蛋白转导肽是人类免疫缺陷病毒1型(human immunodeficiency virus type 1, HIV-1)编码的一段富含碱性氨基酸、带正电荷的多肽,属于蛋白转导域家族的一员。长期研究发现其全长及11个碱性氨基酸富集区的核心肽段(YGRKKRRQRRR)不仅能够在包括蛋白质、多肽及核酸等多种外源生物大分子的跨膜转导过程中具有重要作用,而且能够携带这些外源生物大分子通过活体细胞的各种生物膜性结构(如细胞膜和血脑屏障等)并发挥生理功能,但其跨膜转导机制仍不明确。新近研究还发现TAT核心肽段在促进外源蛋白高效表达过程中也具有重要作用,能够显著增加外源蛋白高效、可溶性表达的水平,显示了TAT蛋白转导肽的新功能。以TAT蛋白转导肽跨膜转导作用的长期研究背景为基础,分别从TAT蛋白转导肽的结构特点、其跨膜转导作用的影响因素及其作用机制等方面进行了系统综述,进一步结合TAT蛋白转导肽的最新研究进展分别从药物研发、机制探索及新功能的开发等方面展望了后续研究方向与应用价值,不仅为深入阐述TAT蛋白转导肽的跨膜转导作用的功能意义提供了参考依据,而且为TAT蛋白转导肽在微生物工程及蛋白质工程等领域的潜在应用价值提供了重要参考信息。

关键词: TAT蛋白转导肽碱性氨基酸蛋白转导外源蛋白表达    
Abstract:

The TAT protein transduction peptide rich in basic amino acids, encoded by human immunodeficiency virus type 1, was a member of the protein transduction domain family. It has been widely known that the full-length TAT peptide and the core domain (YGRKKRRQRRR) play important roles in transduction of heterologous biological macromolecules such as proteins, peptides and nucleotides to across all kind of biomembranes in vivo, although the mechanism is still unknown. Recently, the TAT core domain has another function for promoting heterologous protein expression in E. coli was demonstrated. Accordingly, the current progress of TAT peptide from the structural features, factors affecting protein transduction and the underlying mechanism were reviewed in order to promote the application of the TAT peptide.

Key words: Trans-activator transduction    Protein transduction peptide    Basic amino acid    Protein transduction    Expression of heterologous proteins
收稿日期: 2010-06-08 出版日期: 2010-10-25
ZTFLH:  Q819  
基金资助:

国家"973"计划(2006CB504100)、国家科技重大专项(2009ZX09503-002, 2009ZX09301-002, 2009ZX09103-616)、国家自然科学基金(30973107, 30772293)资助项目

通讯作者: 张成岗     E-mail: zhangcg@bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴永红
张成岗

引用本文:

吴永红, 张成岗. HIV-1 TAT蛋白转导肽的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 66-73.

WU Yong-hong, ZHANG Cheng-gang. Current Progress on the HIV-1 TAT Protein Transduction Peptide. China Biotechnology, 2010, 30(10): 66-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I10/66


[1] Mochizuki T, Kim J, Sasaki K. Microinjection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell. Peptides, 2010, 31: 926-931.

[2] Stein P. Microinjection of plasmids into meiotically incompetent mouse oocytes. CSH Protoc, 2009, 1: pdb. prot5135.

[3] Stroh T, Erben U, Kuhl A A, et al. Combined pulse electroporation - a novel strategy for highly efficient transfection of human and mouse cells. PLoS One, 2010, 5: e9488.

[4] Charoo N A, Rahman Z, Repka M A, et al. Electroporation: An avenue for transdermal drug delivery. Curr Drug Deliv, 2010, 7: 125-136.

[5] Tang J, Wei H, Liu H, et al. Pharmacokinetics and biodistribution of itraconazole in rats and mice following intravenous administration in a novel liposome formulation. Drug Deliv, 2010, 17: 223-230.

[6] Schwendener R A, Ludewig B, Cerny A, et al. Liposome-based vaccines. Methods Mol Biol, 2010, 605: 163-175.

[7] Lei L, Han D, Efficient transduction of spiral ganglion cells using adenovirus type 5 vector in the rat. Acta Otolaryngol, 2010, DOI: 10.3109/00016480903510742.

[8] Xu Y, Gong B, Yang Y, et al. Adenovirus-mediated overexpression of glutathione-s-transferase mitigates transplant arteriosclerosis in rabbit carotid allografts. Transplantation, 2010, 89: 409-416.

[9] Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997, 272: 16010-16017.

[10] Brooks N A, Pouniotis D S, Tang C K. Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta, 2010, 1805: 25-34.

[11] 彭涛, 刘英辉, 杨春蕾, 等. 体内蛋白转导的研究进展. 中国药科大学学报, 2003, 34: 477-480. Peng T, Liu Y H, Yang C L, et al. Journal of China Pharmaceutical University, 2003, 34: 477-480.

[12] 李锋, 陈岚, 肖新莉, 等. 蛋白转导肽-外源物质进入细胞的新工具. 生命的科学, 2004, 34: 192-194. Li F, Chen L, Xiao X L, et al. Chinese Bulletin of Life Sciences, 2004, 34: 192-194.

[13] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55: 1179-1188.

[14] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55: 1189-1193.

[15] Derossi D, Joliot A H, Chassaing G. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem, 1994, 269: 10444-10450.

[16] Elliott S L, Pye S J, Schmidt C. Dominant cytotoxic T lymphocyte response to the immediate-early trans-activator protein, BZLF1, in persistent type A or B Epstein-Barr virus infection. J Infect Dis, 1997, 176: 1068-1072.

[17] Han K, Jeon M J, Kim S H. Efficient intracellular delivery of an exogenous protein GFP with genetically fused basic oligopeptides. Mol Cells, 2001, 12: 267-271.

[18] Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med, 2001, 31: 1509-1519.

[19] Park J, Ryu J, Jin L H, et al. 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells, 2002, 13: 202-208.

[20] Jin L, Lai B, Geng Y, et al. The influence of human single chain inteleukin-12 gene transduction on the biological behavior of hepatoma 7721 cells. Chin Med Sci J, 2001, 16: 147-152.

[21] Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000, 21: 45-48.

[22] 严世荣, 严洁, 龚坚, 等. TAT-β-半乳糖苷酶对小鼠生物膜穿透性的研究. 基础医学与临床, 2002, 22: 343-345. Yan S R, Yan J, Gong J, et al. Basic & Clinical Medicine, 2002, 22: 343-345.

[23] 刘强, 梁英民, 郑瑾, 等. PTD 介导蛋白通过血脑屏障及其在脑组织中的分布. 中国现代医学杂志, 2003, 13: 33-35. Liu Q, Liang Y M, Zheng J, et al. China Journal of Modern Medicine, 2003, 13: 33-35.

[24] 陈菁, 刘树滔, 饶平凡, 等. PTD-Tat之C端融合在活体体内的跨膜递送作用. 福州大学学报, 2006, 34: 301-304. Chen J, Liu S T, Rao P F, et al. Journal of Fuzhou University, 2006, 34: 301-304.

[25] Wu Y H, Ren C H, Gao Y et al. A novel method for promoting heterologous protein expression in Escherichia coli by fusion with the HIV-1 TAT core domain. Amino Acids, 2010 Mar 6. doi:10.1007/s00726-010-0534-2.

[26] Arya S K, Guo C, Josephs S F, et al. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science. 1985, 229: 69-73.

[27] Dayton A I, Sodroski J G, Rosen C A, et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell, 1986, 44: 941-947.

[28] Fisher A G, Feinberg M B, Josephs S F, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature, 1986, 320: 367-371.

[29] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A, 1994, 91:664-668.

[30] 杨永臣, 袁崇刚, 李荣秀. Tat蛋白及其内化作用. 生命的化学, 2001, 21: 265-268. Yang Y C, Yuan C G, Li R X. Chinese Bulletin of Life Sciences, 2001, 21: 265-268.

[31] 艾菁, 王丽梅, 夏威, 等. Tat蛋白结构与功能的研究进展. 细胞与分子免疫学杂志, 2005, 21(Suppl): 133-135. Ai J, Wang L M, Xia W, et al. Chinese Journal of Cellular and Molecular Immunology, 2005, 21(Suppl): 133-135.

[32] 尹锐, 郝飞. 穿膜肤HIV Tat蛋白的研究进展. 免疫学杂志, 2005, 21: 77-81. Yin R, Hao F. Immunological Journal, 2005, 21: 77-81.

[33] Loret E P, Vives E, Ho P S, et al. Activating region of HIV-1 Tat protein: vacuum UV circular dichroism and energy minimization. Biochemistry, 1991, 30: 6013-6023.

[34] Tahirov T H, Babayeva N D, Varzavand K, et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature. 2010,465(7299):747-751.

[35] Ryu J, Han K, Park J, et al. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells, 2003, 16: 385-391.

[36] Eum W S, Jang S H, Kim D W, et al. Enhanced transduction of Cu,Zn-superoxide dismutase with HIV-1 Tat protein transduction domains at both termini. Mol Cells, 2005, 19: 191-197.

[37] Gratton J P, Yu J, Griffith J W, et al. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med, 2003, 9: 357-362.

[38] Suzuki T, Futaki S, Niwa M, et al. Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem, 2002, 277: 2437-2443.

[39] Eguchi A, Akuta T, Okuyama H, et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem, 2001, 276: 26204-26210.

[40] Tseng Y L, Liu J J, Hong R L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol, 2002, 62: 864-872.

[41] Koppelhus U, Awasthi S K, Zachar V, et al. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev, 2002, 12: 51-63.

[42] Mai J C, Shen H, Watkins S C, et al. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J Biol Chem, 2002, 277: 30208-30218.

[43] Chen L L, Frankel A D, Harder J L, et al. Increased cellular uptake of the human immunodeficiency virus-1 Tat protein after modification with biotin. Anal Biochem, 1995, 227: 168-175.

[44] Wender P A, Mitchell D J, Pattabiraman K, et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A, 2000, 97: 13003-13008.

[45] Koppelhus U, Shiraishi T, Zachar V, et al. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain. Bioconjug Chem, 2008, 19: 1526-1534.

[46] Mitchell D J, Kim D T, Steinman L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res, 2000, 56: 318-325.

[47] Wright L R, Rothbard J B, Wender P A. Guanidinium rich peptide transporters and drug delivery. Curr Protein Pept Sci, 2003, 4: 105-124.

[48] Torchilin V P, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001, 98: 8786-8791.

[49] Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000, 18: 410-414.

[50] Schwarze S R, Ho A, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285: 1569-1572.

[51] Nori A, Jensen K D, Tijerina M, et al. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem, 2003, 14: 44-50.

[52] Torchilin V P, Levchenko T S. TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci, 2003, 4: 133-140.

[53] Nagahara H, Vocero-Akbani A M, Snyder E L, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med, 1998, 4: 1449-1452.

[54] Derossi D, Calvet S, Trembleau A, et al. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem, 1996, 271: 18188-18193.

[55] Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev, 2005, 57:559-577.

[56] Koppelhus U, Nielsen P E. Cellular delivery of peptide nucleic acid (PNA). Adv Drug Deliv Rev, 2003, 55: 267-280.

[57] Wadia J S, Stan R V, Dowdy S F. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 2004, 10: 310-315.

[58] Wadia J S, Dowdy S F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev, 2005, 57: 579-596.

[1] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[2] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[3] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[4] 袁雅红, 赵珊珊, 王小莉, 腾智平, 李东升, 曾毅. HIV-1 Tat蛋白抑制骨髓间充质干细胞的造血支持功能[J]. 中国生物工程杂志, 2017, 37(6): 1-8.
[5] 孙元元, 李薇, 叶守东, 刘大海. Gadd45g诱导小鼠胚胎干细胞向中内胚层分化[J]. 中国生物工程杂志, 2017, 37(4): 9-17.
[6] 谢琳娜,曾燕华,柯伙钊,何文胜,郑敏,林德馨. 在肝癌细胞SK-Hep1中沉默STAT3基因增强sorafenib疗效的初步研究*[J]. 中国生物工程杂志, 2017, 37(12): 8-13.
[7] 李振华, 李翠平, 张相强, 代立婷, 唐梦思, 王国才, 蒋建伟, 曹明溶. EM-3通过Stat3通路诱导鼻咽癌细胞凋亡和G2/M期阻滞并降低SP细胞比例[J]. 中国生物工程杂志, 2016, 36(3): 1-10.
[8] 孟树林, 马步云, 张新敏, 葛云, 张蓉, 黄盼盼, 王毅刚. 硫利达嗪对肝癌干细胞的杀伤作用研究[J]. 中国生物工程杂志, 2015, 35(2): 8-17.
[9] 李华玲, 王凯, 秦艳, 刘丹丹, 陈文飞. Tat-PTD介导的金属硫蛋白高产量表达及其高效表达重组菌株重金属抗逆性研究[J]. 中国生物工程杂志, 2013, 33(9): 17-23.
[10] 王琪, 俞慧清, 陈建泉, 曾宪垠, 成国祥. 细胞穿透性重组酶Tat-FLPo的表达、纯化及活性检测[J]. 中国生物工程杂志, 2013, 33(8): 84-90.
[11] 满朝来, 李凤, 唐高霞, 甄鑫, 弭晓菊. Akirin基因研究进展[J]. 中国生物工程杂志, 2012, 32(03): 106-109.
[12] 李玲玲, 江冠民, 张革, 衣艳梅, 张帆, 杜军. TSA通过抑制STAT1磷酸化与核转位下调人肝癌细胞HepG2内 IDO的表达[J]. 中国生物工程杂志, 2011, 31(9): 1-7.
[13] 曹冠琳, 安新民, 龙萃, 薄文浩, 张志毅. 外源突变基因 AGM3 过表达对烟草开花的抑制和花器官发育的影响[J]. 中国生物工程杂志, 2011, 31(06): 49-57.
[14] 吴永红, 石锦平, 何国维, 任长虹, 高艳, 张成岗. TAT蛋白转导肽介导的秀丽线虫体内外源蛋白的跨膜转导研究[J]. 中国生物工程杂志, 2011, 31(03): 39-45.
[15] 吴永红 张成岗. HIV-1 TAT蛋白转导肽的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.