Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (03): 110-114    
综述     
香蕉基因组测序及胁迫相关功能基因研究进展
刘菊华1, 徐碧玉1, 张建平1, 贾彩红1, 王甲水2, 张建斌1, 金志强1,2
1. 中国热带农业科学院热带生物技术研究所 农业部热带作物生物技术重点开放实验室 海口 571101;
2. 中国热带农业科学院海口实验站 海口 570102
Research Progress on Banana Genomics and Functional Genomics Involved in Stress Resistance
LIU Ju-hua1, XU Bi-yu1, ZHANG Jian-ping1, JIA Cai-hong1, WANG Jia-shui2, ZHANG Jian-bin1, JIN Zhi-qiang1,2
1. Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
 全文: PDF(387 KB)   HTML
摘要:

香蕉是重要的热带水果之一,是世界第四大粮食作物。香蕉抗性相关的功能基因组学研究一直是香蕉研究的热点和核心。综述了近年来香蕉基因组测序、胁迫相关功能基因分离和鉴定等方面的最新研究进展,将有助于从源头上对香蕉进行创新性的研究,为香蕉遗传改良和新品种培育提供一定的理论依据。

关键词: 香蕉基因组测序胁迫功能基因    
Abstract:

Banana is one of the most important tropical fruits and the fourth grain crops in the world. The research of banana functional genomics involved in stress resistance has always been the hot spot and core in all banana researches. Novel researches on the banana genome sequencing, isolation and identification of functional genes involved in resistance are reviewed, which will help us to investigate banana originally and provide theoretical basis for banana genetics improvement and new varieties breeding.

Key words: Banana    Genome sequencing    Stress    Functional gene
收稿日期: 2011-11-24 出版日期: 2012-03-25
ZTFLH:  Q75  
基金资助:

国家现代香蕉产业技术体系(CARS-32)、中央级公益性科研院所基本科研业务费专项资金(ITBB110202) 资助项目

通讯作者: 金志强,zhiqiangjin2001@yahoo.com.cn     E-mail: zhiqiangjin2001@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘菊华, 徐碧玉, 张建平, 贾彩红, 王甲水, 张建斌, 金志强. 香蕉基因组测序及胁迫相关功能基因研究进展[J]. 中国生物工程杂志, 2012, 32(03): 110-114.

LIU Ju-hua, XU Bi-yu, ZHANG Jian-ping, JIA Cai-hong, WANG Jia-shui, ZHANG Jian-bin, JIN Zhi-qiang. Research Progress on Banana Genomics and Functional Genomics Involved in Stress Resistance. China Biotechnology, 2012, 32(03): 110-114.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I03/110


[1] Moffat A S. Crop engineering goes. Science, 1999, 285(5426): 370-371.

[2] Bartos J, Alkhimova O, Dolezelova M, et al. Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenetics and Genome Research, 2005, 109(1-3): 50-57.

[3] Aert R, Sági L, Volckaert G. Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor Appl Genet, 2004, 109(1):129-139.

[4] Safár J, Noa- Carrazana J C, Vrána J, et al.Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome.Genome, 2004, 47(6):1182-1191.

[5] Cheung F, Town C D. A BAC end view of the Musa acuminata genome. BMC Plant Biol, 2007, 7:29.

[6] http://www.musagenomics.org.

[7] http://www.gnpannot.org/fr/content/ musaceae-statistics.

[8] Hribová E, Neumann P, Matsumoto T, et al. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol, 2010, 10: 204.

[9] Santos C M R, Martins N F, H?rberg H M, et al. Analysis of expressed sequence tags from Musa acuminata ssp.burmannicoides, var. Calcutta 4 (AA) leaves submitted to temperature stresses. Theor Appl Genet, 2005, 110(8): 1517-1522.

[10] Henry I M, Carpentier S C, Pampurova S, et al. Structure and regulation of the Asr gene family in banana.Planta, 2011, 234(4):785-798.

[11] 赵宏亮,冯仁军, 徐碧玉,等.香蕉中 Maasr1 基因的生物信息学分析。生物技术通讯,2006,17(3):336-340. Zhao H L, Feng R J, Xu B Y, et al. Bioinformatical analysis of Maasr1 gene from banana. Letters in Biotechnology, 2006,17(3):336-340.

[12] 王园.香蕉ASR基因抗逆功能的研究.海口:海南大学,农学院,2010,34-65. Wang Y. Study of function of MaASR1 tolerance to drought and salt resistant. Haikou:Hainan University, Agricultudal College,2010,34-65.

[13] Shekhawat U K, Srinivas L, Ganapathi T R. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta, 2011, 234(5):915-932.

[14] Wang Y, Lu W, Jiang Y, et al. Expression of ethylene-related expansin genes in cool-stored ripening banana fruit. Plant Science, 2006, 170(5):962-967.

[15] Shekhawat U K, Ganapathi T R, Srinivas L. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene ( MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep, 2011, 38(6):4023-4035.

[16] Singla-Pareek S L, Yadav S K, Pareek A, et al. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 2007, 17(2):171-180.

[17] 刘菊华,邓成菊,金志强,等。香蕉乙二醛酶基因 MaGLO14 的克隆及在非生物胁迫下的功能鉴定.中山大学学报,2011,50(5):1-6. Liu J H,Deng C J,Jin Z Q,et al. Isolation and functional identification of banana glyoxalase gene ( MaGLO14 ) under various abiotic stresses. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011,50(5):1-6.

[18] 邓成菊,贾彩红,张建斌,等.香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究.中国生物工程杂志,2010,30(8):22-26. Deng C J,Jia C H, Zhang J B, et al. Enhancement of tolerance to abiotic stress of Saccharomyces cerevisiae transformed by a gene encoding glyoxalase from banana. China Biotechnology, 2010,30(8):22-26.

[19] Jin X,Feng D, Wang H, et al. A novel tissue-specific plantain β-1,3-glucanase gene that is regulated in response to infection by Fusarium oxysporum fsp. Cubense. Biotechnol Lett, 2007, 29:1431-1437.

[20] Peraza-Echeverria S, James-Kay A, Canto-Canché B, et al. Structural and phylogenetic analysis of Pto-type disease resistance gene candidates in banana.Mol Genet Genomics, 2007, 278(4):443-453.

[21] Liu H Y, Dai J R, Feng D R, et al. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol, 2010, 52(3):315-323.

[22] Zhu X, Wang A, Zhu S, et al. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. J Plant Physiol, 2011,168(14):1634-1640.

[23] Chen Y P, Chen Y F, Zhao J T, et al. Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana Fusarium wilt. Journal of Plant Physiology and Molecular Biology, 2007, 33(6):567-573.

[24] Ho V S, Ng T B. Chitinase-like proteins with antifungal activity from emperor banana fruits.Protein Pept Lett, 2007, 14(8):828-831.

[25] Ho V S, Wong J H, Ng T B. A thaumatin-like antifungal protein from the emperor banana.Peptides, 2007, 28(4):760-766.

[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[4] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[5] 姚长洪, 吴佩春, 曹旭鹏, 刘娇, 姜君鹏, 薛松. 两株筛自大规模生产跑道池的节旋藻性能比较研究[J]. 中国生物工程杂志, 2017, 37(5): 28-37.
[6] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[7] 单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.
[8] 张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.
[9] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[10] 韩晗, 包旦奇, 杨飞芸, 刘坤, 杨天瑞, 杨杞, 李国婧, 王瑞刚. 中间锦鸡儿CiCHIL克隆及其黄酮代谢功能研究[J]. 中国生物工程杂志, 2016, 36(9): 11-20.
[11] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[12] 李帅, 单洪瑜, 董晓雨, 郭长虹, 郭东林. 磷酸肌醇磷脂酶C在DREB2表达调控中的作用[J]. 中国生物工程杂志, 2016, 36(4): 110-115.
[13] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[14] 孙瑞芬, 张艳芳, 郭树春, 于海峰, 李素萍, 乔慧蕾, 聂惠, 安玉麟. 向日葵ACC氧化酶基因(HaACO1)的克隆及表达分析[J]. 中国生物工程杂志, 2015, 35(9): 21-27.
[15] 李洋, 于丽杰, 金晓霞. 植物重金属胁迫耐受机制[J]. 中国生物工程杂志, 2015, 35(9): 94-104.