Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (5): 28-37    DOI: 10.13523/j.cb.20170504
研究报告     
两株筛自大规模生产跑道池的节旋藻性能比较研究
姚长洪1, 吴佩春1, 曹旭鹏1, 刘娇1,2, 姜君鹏1,2, 薛松1
1. 中国科学院大连化学物理研究所海洋生物工程组 大连 116023;
2. 中国科学院大学 北京 100049
Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond
YAO Chang-hong1, WU Pei-chun1, CAO Xu-peng1, LIU Jiao1,2, JIANG Jun-peng1,2, XUE Song1
1. Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1678 KB)   HTML
摘要:

温度是影响节旋藻大规模培养中生物质产率的重要因素。筛选高产和耐受温度胁迫的优良藻株对提高节旋藻产量具有重要意义。从生产规模跑道池中分离到形态特征差异显著而亲缘关系很近的两株节旋藻Arthrospira sp.DICP-D (D)和Arthrospira sp.DICP-F (F),对其生物质积累性能和对低温、高温胁迫的耐受能力进行了评估。结果显示,尽管藻株D和藻株F在正常条件下拥有相似的生物质组成,在N胁迫和低温胁迫下拥有相同的碳水化合物积累能力,然而藻株D的生物质产率比相同条件下的藻株F高33%~230%。藻株D对高温胁迫的耐受能力是藻株F的2.1倍。藻株D在41℃和15℃下的生物质产率分别维持在正常温度下的73%和61%,显示其对温度胁迫的良好耐受能力。藻株D比藻株F拥有更有效的光保护机制,使其能够更好地适应胁迫环境。藻株D在生物质产率和胁迫耐受能力上的优良性状使其在户外大规模培养中具有良好的应用前景。

关键词: 温度节旋藻藻种选育胁迫耐受    
Abstract:

Temperature is an important factor affecting biomass productivity in large-scale cultivation of Arthrospira. To improve Arthrospira production, it is crucial to screen strains with high productivity and excellent temperature-tolerance ability. Two strains Arthrospira sp. DICP-D (D) and Arthrospira sp. DICP-F (F) were isolated and identified from full-scale Arthrospira cultivation raceway pond. Although strain D and strain F displayed significant difference in morphology, they shared closest phylogenetic relationship among the existing Arthrospira strains with accessible 16S rRNA gene information. Under normal conditions, strain D and strain F harbor almost the same biomass compositions, and they also accumulated identical carbohydrate content in cell under nitrogen stress or low temperature stress conditions. However, the biomass productivity in strain D was 33% to 230% higher than that in strain F under the same cultivation conditions tested. Strain D showed 1.1 times better tolerance ability towards high temperature stress than strain F. The biomass productivity in strain D under 41℃ and 15℃ could be maintained at 73% and 61%, respectively, of that under normal temperature, demonstrating that strain D had good tolerance ability towards temperature stress. Strain D held more efficient photoprotection mechanism than strain F did, which endowed it better ability to acclimate to stressful conditions. The excellent biomass productivity and stress tolerance ability in strain D could make it applicable with great potential in outdoor large-scale Arthrospira cultivation.

Key words: Temperature    Stress tolerance    Algal strain selection    Arthrospira
收稿日期: 2016-12-22 出版日期: 2017-05-25
ZTFLH:  Q939.97  
基金资助:

国家“863”计划(2014AA022004)、国家自然科学基金(41406177)资助项目

通讯作者: 薛松     E-mail: xuesong@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

姚长洪, 吴佩春, 曹旭鹏, 刘娇, 姜君鹏, 薛松. 两株筛自大规模生产跑道池的节旋藻性能比较研究[J]. 中国生物工程杂志, 2017, 37(5): 28-37.

YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond. China Biotechnology, 2017, 37(5): 28-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170504        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I5/28

[1] Sili C, Torzillo G, Vonshak A. Ecology of Cyanobacteria Ⅱ:Their Diversity in Space and Time. 1st ed. Dordrecht:Springer Netherlands, 2012:677-705.
[2] Belay A. Biology and Industrial Production of Arthrospira (Spirulina), Handbook of Microalgal Culture. 2nd ed. New York:John Wiley & Sons, Ltd, 2013:339-358.
[3] Aikawa S, Izumi Y, Matsuda F, et al. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresource Technology, 2012, 108:211-215.
[4] Möllers K B, Cannella D, Jørgensen H, et al. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels, 2014, 7(1):64.
[5] Chen J, Wang Y, Benemann J R, et al. Microalgal industry in China:challenges and prospects. Journal of Applied Phycology, 2016, 28(2):1-11.
[6] Lu Y M, Xiang W Z, Wen Y H. Spirulina (Arthrospira) industry in Inner Mongolia of China:current status and prospects. Journal of Applied Phycology, 2011, 23(2):265-269.
[7] 曾文炉, 丛威, 蔡昭铃, 等. 螺旋藻的营养方式及光合作用影响因素. 植物学报, 2002, 19(1):70-77. Zeng W L, Cong W, Cai Z L, et al. Reviews on the trophic modes and factors affecting photosynthesis of Spirulina. Chinese Bulletin of Botany, 2002, 19(1):70-77.
[8] 杨学文, 李博生, 王志忠, 等. 温度对3种产业化螺旋藻生长及蛋白质含量影响的研究. 内蒙古农业大学学报(自然科学版), 2006, 27(2):60-64. Yang X W, Li B S, Wang Z Z, et al. Effect of temperatues on growth and protein content of three species of Spirulina (Arthrospira). Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2006, 27(2):60-64.
[9] 张学成, 薛命雄. 我国螺旋藻产业的现状和发展潜力. 生物产业技术, 2012,3(2):47-53. Zhang X C, Xue M X, The current status and developmental potential of Arthrospira industry in China. Biotechnology & Business, 2012, 3(2):47-53.
[10] 巩东辉. 鄂尔多斯高原碱湖钝顶螺旋藻对低温、强光的响应. 呼和浩特:内蒙古农业大学, 农学院,2013. Gong D H. The Response of Spirulina platensis to Low Temperature and High Light in an Alkali Lake of the Erdos Plateau. Hohbot:Inner Mongolia Agricultural University, Agricultural College,2013.
[11] 王妮, 王素英, 师德强. 耐低温螺旋藻新品系的诱变选育. 安徽农业科学, 2008, 36(29):12552-12553. Wang N, Wang S Y, Shi D Q. Mutant screening of low temperature tolerence strain of Spirulina. Journal of Anhui Agricultural Sciences, 2008, 36(29):12552-12553.
[12] 殷春涛, 胡鸿钧, 李夜光, 等. 中温螺旋藻新品系的选育研究. 植物科学学报, 1997, (3):250-254. Yin C T, Hu H J, Li Y G, et al. Studies on middle temperature strains selection of Spirulina platensis. Journal of Wuhan Botanical Research, 1997, (3):250-254.
[13] 李正娟, 常蓉, 石光波, 等. 螺旋藻规模生产优良藻株的选育. 食品工业科技, 2016, (14):210-218. Li Z J, Chang R, Shi G B, et al. Selection and breeding of fine Spirulina strains of large-scale production. Science and Technology of Food Industry, 2016, (14):210-218.
[14] Yao C, Pan Y, Lu H, et al. Utilization of recovered nitrogen from hydrothermal carbonization process by Arthrospira platensis. Bioresource Technology, 2016, 212:26-34.
[15] Yao C, Ai J, Cao X, et al. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresource Technology, 2012, 118(8):438-444.
[16] Smith P K, Krohn R I, Hermanson G T, et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 1985, 150(1):76-85.
[17] Yao C H, Ai J N, Cao X P, et al. Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Applied Microbiology and Biotechnology, 2013, 97(13):6099-6110.
[18] Chen C Y, Kao P C, Tsai C J, et al. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 2013, 145(4):307-312.
[19] Liu J, Liu Y, Wang H, et al. Direct transesterification of fresh microalgal cells. Bioresource Technology, 2015, 176:284-287.
[20] Murchie E H, Lawson T. Chlorophyll fluorescence analysis:a guide to good practice and understanding some new applications. Journal of Experimental Botany, 2013, 64(13):3983-3998.
[21] Scheldeman P, Baurain D, Bouhy R, et al. Arthrospira (‘Spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiology Letters, 1999, 172(2):213-222.
[22] Cirulis J T, Scott J A, Ross G M. Management of oxidative stress by microalgae. Canadian Journal of Physiology & Pharmacology, 2013, 91(1):15-21.
[23] Minhas A K, Peter H, Barrow C J, et al. A Review on the Assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 2016, 7:546.
[24] Couso I, Vila M, Vigara J, et al. Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. European Journal of Phycology, 2012, 47(3):223-232.
[25] Singh S C, Sinha R P, Häder D P. Role of lipids and fatty acids in stress tolerance in Cyanobacteria. Acta Protozoologica, 2002, 41(4):297-308.
[26] Wang H T, Yao C H, Liu Y N, et al. Identification of fatty acid biomarkers for quantification of neutral lipids in marine microalgae Isochrysis zhangjiangensis. Journal of Applied Phycology, 2015, 27(1):249-255.
[27] Suzuki E, Ohkawa H, Moriya K, et al. Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Applied & Environmental Microbiology, 2010, 76(10):3153-3159.
[28] Gründel M, Scheunemann R, Lockau W, et al. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology, 2012, 158(12):3032-3043.
[29] Vonshak A, Novoplansky N. Acclimation to low temperature of two Arthrospira platensis (cyanobacteria) strains involves down-regulation of PSⅡ and improved resistance to photoinhibition. Journal of Phycology, 2008, 44(4):1071-1079.
[30] Maclde O, Mpc M, Robbs P G, et al. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 1999, 7(4):261-275.
[31] Cohen Z, Vonshak A, Richmond A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry, 1987, 26(8):2255-2258.

[1] 袁小川, 连芳, 赵荫农, 陈闯, 黄山, 李科志, 曾爱屏, 何剑波, 邬国斌. 基于电泳温度提升建立大鼠肝快速透明化模型[J]. 中国生物工程杂志, 2017, 37(9): 65-70.
[2] 杨侠, 李茹莹. 种泥预处理和发酵温度对暗发酵产氢的影响研究进展[J]. 中国生物工程杂志, 2017, 37(11): 132-140.
[3] 李帅, 单洪瑜, 董晓雨, 郭长虹, 郭东林. 磷酸肌醇磷脂酶C在DREB2表达调控中的作用[J]. 中国生物工程杂志, 2016, 36(4): 110-115.
[4] 林衡, 李军明, 葛高顺, 张立超, 孙利慧, 胡学军. 聚乙二醇对ELP[I]40相变温度的影响[J]. 中国生物工程杂志, 2013, 33(5): 81-85.
[5] 赵微, 尹静, 詹亚光, 任春林, 王艳, 马泓思, 苏欣. 温度胁迫对白桦悬浮细胞中三萜积累及防御酶活性的影响[J]. 中国生物工程杂志, 2013, 33(2): 34-40.
[6] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.
[7] 石金磊,徐健遥,蒋昌华,李敏,李卓夫,胡永红,明凤. 月季eIF-5A基因的表达增强宿主大肠杆菌对高温和低温的耐性[J]. 中国生物工程杂志, 2008, 28(1): 18-24.
[8] 权春善,曾勇峰,刘俏,范圣第. 洋葱伯克霍尔德菌发酵产抗菌物质CF66I温度控制策略[J]. 中国生物工程杂志, 2007, 27(4): 66-70.
[9] 马晓轩, 范代娣, 骆艳娥, 米钰. 基因重组大肠杆菌表达类人胶原蛋白诱导条件优化研究[J]. 中国生物工程杂志, 2005, 25(4): 29-32.
[10] 余焱林, 刘飞鹏, 周天鸿, 温晋. PCR专一性研究——PCR的二段扩增法[J]. 中国生物工程杂志, 1993, 13(1): 17-19.
[11] 陈盛, 李柱来. 壳聚糖固定化脲酶研究Ⅱ[J]. 中国生物工程杂志, 1992, 12(5): 40-43,17.
[12] 陈诗书. 有关聚合酶链反应的若干问题[J]. 中国生物工程杂志, 1991, 11(4): 32-41.
[13] 罗明典. 地球温室效应的产生及其控制的生物技术[J]. 中国生物工程杂志, 1991, 11(2): 59-61.
[14] 杨文治, 宫亚涛, 张建平. 低温技术与生物工程[J]. 中国生物工程杂志, 1990, 10(6): 46-50,61.