Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 121-126    DOI: 10.13523/j.cb.20170217
综述     
植物铁蛋白与氧化胁迫应激
单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林
哈尔滨师范大学生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室 哈尔滨 150025
Phytoferritin and the Response to Oxidative Stress
SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University, Harbin 150025, China
 全文: PDF(396 KB)   HTML
摘要:

植物铁蛋白是植物体重要的铁调节蛋白。许多研究表明植物铁蛋白与氧化胁迫抗性之间具有较强关联。植物铁蛋白不仅能抵御高铁产生的氧化毒性,在很多氧化胁迫及环境胁迫抗性中也发挥作用。对植物铁蛋白在氧化及逆境胁迫中的应激加以综述,为铁蛋白在生物工程领域的应用提供理论依据。

关键词: 氧化胁迫逆境胁迫植物铁蛋白抗性    
Abstract:

Phytoferritin is an important iron regulatory protein in plants. Many studies have shown that phytoferritin has strong connection with oxidative stress resistance. Phytoferritin can not only defense the oxidation toxic from high iron, it also play a role in a lot of resistance to oxidative and environmental stress. The responses of phytoferritin to oxidative and environment stress are reviewed, to provide basis for the application of phytoferritin in biotechnology.

Key words: Oxidative stress    Resistance    Phytoferritin    Environment stress
收稿日期: 2016-10-08 出版日期: 2017-02-25
ZTFLH:  Q812  
基金资助:

国家“863”计划(2013AA102607)、国家转基因生物新品种培育重大专项(2011ZX08004-002)、黑龙江省自然科学基金(C201308)资助项目

通讯作者: 郭东林     E-mail: gdl_hsd@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.

SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress. China Biotechnology, 2017, 37(2): 121-126.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170217        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/121

[1] Theil E C. Ferritin:structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem, 1987, 56:289-315.
[2] Harrison P M, Arosio P. The ferritins:molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta, 1996, 1275(3):161-203.
[3] Balla G, Jacob H S, Balla J, et al. Ferritin:a cytoprotective antioxidant strategem of endothelium. J Biol Chem, 1992, 267(25):18148-18153.
[4] Müller C, Kuki K N, Pinheiro D T, et al. Differential physiological responses in rice upon exposure to excess distinct iron forms. Plant & Soil, 2015, 391(1-2):123-138.
[5] Vranov E, Inz D, Van Bresegem F. Signal transduction during oxidative stress.J Exp Bot, 2002, 53:1227-1236.
[6] Asada K.The water-water cycle in chloroplast:Scavenging of active oxygen and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:601-639.
[7] Delaat D M, Colombo C A, Chiorato A F, et al. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol Biol Rep, 2014, 41(3):1427-1435.
[8] Mandal L N, Haldar M. Influence of phosphorus and zinc application on the availability of zinc, copper, iron, manganese, and phosphorus in waterlogged rice soils. Soil Science, 1980, 130(5):251-257.
[9] Zhao G, Bou-Abdallah F, Arosio P, et al. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Biochem, 2003, 42(10):3142-3150.
[10] Hintze K J, Theil E C. Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci, 2006, 63(5):591-600.
[11] Su M, Cavallo S, Stefanini S, et al. The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties. Biochem, 2005, 44(15):5572-5578.
[12] Briat J F, Ravet K, Arnaud N, et al. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot, 2010, 105(5):811-822.
[13] Ravet K, Touraine B, Boucherez J, et al. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J, 2009, 57(3):400-412.
[14] Jain A, Connolly E L. Mitochondrial iron transport and homeostasis in plants. Front Plant Sci, 2013, 4(16):348.
[15] Tomasi N, Cesco S. Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant & Soil, 2009, 325(1):25-38.
[16] Itai R N, Ogo Y, Kobayashi T, et al. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice (N Y), 2013, 6(1):1-16.
[17] Sivaprakash K R, Krishnan S, Datta S K, et al. Tissue-specific histochemical localization of iron and ferritin gene expression in transgenic indica rice Pusa basmati(Oryza sativa L.). J Genet, 2006, 85(2):157-160.
[18] Sudre D, Gutierrez-Carbonell E, Lattanzio G, et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J Exp Bot, 2013, 64(10):2665-2688.
[19] DeLaat D M, Colombo C A, Chiorato A F, et al. Induction of ferritin synthesis by water deficit and iron excess in common bean (Phaseolus vulgaris L.). Mol Biol Rep, 2014, 41(3):1427-1435.
[20] Ravet K, Reyt G, Arnaud N, et al. Iron and ROS control of the Downs Tream mRNA decay pathway is essential for plant fitness. EMBO J, 2012, 31(1):175-186.
[21] Bottcher A, Nobile P M, Martins P F, et al. A role for ferritin in the antioxidant system in coffee cell cultures. Biometals, 2011, 24(2):225-237.
[22] Kang J H. Oxidative damage of DNA induced by ferritin and hydrogen peroxide. B Kor Chem Soc, 2010, 31(10):2873-2876.
[23] Petit J M, Briat J F, Lobréaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J, 2001, 359(3):575-582.
[24] Scarpeci T E, Zanor M I, Carrillo N, et al. Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis:a focus on rapidly induced genes. Plant Mol Biol, 2008, 66(4):361-378.
[25] Han H J, Peng R H, Zhu B, et al. Gene expression profiles of Arabidopsis under the stress of methyl viologen:a microarray analysis. Mol Biol Rep, 2014, 41(11):7089-7102.
[26] Fobis-Loisy I, Loridon K, Lobréaux S, et al. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem, 1995, 231(3):609-619.
[27] Jithesh M N, Prashanth S R, Sivaprakash K R, et al. Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep, 2006, 25(8):865-876.
[28] Stein R J, Ricachenevsky F K, Fett J P. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci, 2010, 177(6):563-569.
[29] Shevyakova N, Eshinimaeva B, Kuznetsov V. Expression of ferritin gene in Mesembryanthemum crystallinum plants under different supply with iron and different intensity of oxidative stress. Russ J Plant Physiol, 2011, 58(5):768-775.
[30] Tarantino D, Vannini C, Bracale M, et al. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta, 2005, 221(6):757-765.
[31] Murgia I, Arnaud N, Boucherez J, et al. An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem, 2006, 281(33):23579-23588.
[32] Li Q Y, Niu H B, Yin J, et al. Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloid Surface B, 2008, 65(2):220-225.
[33] Savino G, Briat J F, Lobréaux S. Inhibition of the iron-induced ZmFer1 maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors. J Biol Chem, 1997, 272(52):33319-33326.
[34] Murgia I, Delledonne M, Soave C. Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J, 2002, 30(5):521-528.
[35] Fobis-Loisy I, Loridon K, Lobréaux S, et al. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem, 1995, 231(3):609-619.
[36] Kumar T R, Prasad M N. Ferritin induction by iron mediated oxidative stress and ABA in Vigna mungo (L.) Hepper seedlings:role of antioxidants and free radical scavengers. J Plant Physiol, 1999, 155(4-5):652-655.
[37] Majerus V, Bertin P, Lutts S. Abscisic acid and oxidative stress implications in overall ferritin synthesis by African rice (Oryza glaberrima Steud.)seedlings exposed to short term iron toxicity. Plant & Soil, 2009, 324(1):253-265.
[38] 聂玉哲, 张晓磊, 李玉花.星星草铁蛋白基因PtFer的克隆及表达分析.生物技术通讯, 2011, 22(1):32-36. Nie Y Z, Zhang X L, Li Y H. Molecular cloning and expression analysis of ferritin related gene PtFer of Puccinellia tenuiflora. Letters in Biotechnology, 2011, 22(1):32-36.
[39] 牛洪斌, 尹钧, 邓德志,等.大麦铁蛋白基因(HvFer1)cDNA的克隆和表达.植物生理学报, 2007, 43(6):1015-1019. Niu H B, Yin J, Deng D Z, et al. Clone and expression of HvFer1 cDNA from barley. J Plant Physiol, 2007, 43(6):1015-1019.
[40] Chen J, Song Y, Zhang H, et al. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Report, 2013, 31(4):946-962.
[41] Xu C, Huang B. Proteins and metabolites regulated by trinexapacethyl in relation to drought tolerance in Kentucky bluegrass. J Plant Growth Regul, 2011, 31(1):25-37.
[42] Baird L M, Dalton D A, Iturbe-Ormaetxe I, et al. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol, 1999, 121(1):97-112.
[43] Rajabbeigi E, Ghanati F, Abdolmaleki P, et al. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med, 2013, 32(4):430-441.
[44] Mata C G, Lamattina L, Cassia R O. Involvement of iron and ferritin in the potato-Phytophthora infestans interaction. Eur J Plant Pathol, 2001, 107(5):557-562.
[45] Mhatre M, Srinivas L, Ganapathi T R. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene. Biol Trace Elem Res, 2011, 144(1-3):1219-1228.
[46] Kumar G B, Srinivas L, Ganapathi T R. Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res, 2011, 142(2):232-241.
[47] Boonyaves K, Gruissem W, Bhullar N K. NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and ferritin genes to increase iron in rice grains. Plant Mol Biol, 2016, 90(3):207-215.
[48] Zhao Y J, Shui X Y, Wang X P, et al. Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat (Triticum aestivum L.). Euphytica, 2016, 209(1):23-30.
[49] Zok A, Oláh R, Hideg É, et al. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tissue Organ, 2010, 100(3):339-344.
[50] 赵永亮, 陈静, 王丹, 等. 转小麦铁蛋白基因酵母的抗氧化活性. 作物学报, 2010, 36(7):1169-1175. Zhao Y L, Chen J, Wang D, et al. Antioxidative activities of transgenic yeast with ferritin gene from wheat. Acta Agronomica Sinica, 2010, 36(7):1169-1175.
[51] 姜廷波, 唐鑫华, 李凤娟,等. 铁蛋白基因表达对烟草耐低铁能力的影响. 植物学通报, 2008, 25(2):167-175. Jiang T B, Tang X H, Li F J, et al. Effects of ferritin gene expression on transgenic tobacco for low iron tolerance. Chin Bull Botany, 2008, 25 (2):167-175.
[52] 唐鑫华, 姜廷波, 高红秀, 等. 转NtFer1基因粳稻空育131抗Fe2+胁迫能力分析. 生物技术通报, 2016, 32(8):77-83. Tang X H, Jiang T B, Gao H X, et al. Analysis on Fe2+ stress resistance of transgenic Japonica kongyu 131 with NtFer1. Biotechnology Bulletin, 2016, 32(8):77-83.
[53] Deák M, Horváth G V, Davletova S, et al. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nature Biotechnology, 1999, 17 (2):192-196.
[54] Hegedûs A, Erdei S, Janda T, et al. Effects of low temperature stress on ferritin or aldose reductase overexpressing transgenic tobacco plants. Acta Biologica Szegediensis, 2002, 46(3-4):97-99.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.
[3] 赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.
[4] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[5] 田宝玉, 马荣琴. 环境微生物的抗生素抗性和抗性组[J]. 中国生物工程杂志, 2015, 35(10): 108-114.
[6] 金超, 柳洁, 季静, 王罡, 曹海燕, 吴疆. 过表达枸杞LcCHYB基因提高洋桔梗抗氧化性的研究[J]. 中国生物工程杂志, 2015, 35(1): 27-33.
[7] 高海伶, 季静, 王罡, 吴广霞, 荣非, 关春峰, 金超. LmAPX基因在大肠杆菌和酵母菌中的表达研究[J]. 中国生物工程杂志, 2014, 34(7): 24-29.
[8] 韦东, 吾鲁木汗·那孜尔别克, 段世雄, 严芳, 恩特马克·布拉提白. 禽多杀性巴氏杆菌C48-3株外膜蛋白H的致病作用[J]. 中国生物工程杂志, 2014, 34(06): 31-39.
[9] 张乐, 陈宣钦, 王琳, 陈丽梅, 李昆志. 丹波黑大豆醛脱氢酶基因GmALDH3-1 的克隆、原核表达和功能分析[J]. 中国生物工程杂志, 2013, 33(5): 86-92.
[10] 徐小静, 安会灵, 陈宁美, 杨婧, 周宜君. 盐芥ThMSD基因在大肠杆菌中的表达及特性研究[J]. 中国生物工程杂志, 2013, 33(4): 74-79.
[11] 章洁琼, 蔡大广, 唐桂香. 甜菜胞囊线虫抗性基因及遗传工程改良策略[J]. 中国生物工程杂志, 2012, 32(10): 99-105.
[12] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[13] 周露, 董春娟, 刘进元. 人工microRNA干扰DREB亚族A-5组转录抑制子基因增强了拟南芥对低温和高盐胁迫的耐受性[J]. 中国生物工程杂志, 2011, 31(5): 34-41.
[14] 饶健, 刘迪秋, 葛锋, 陈朝银, 周阿涛, 丁为群. 植物来源的镰刀菌抗性相关基因[J]. 中国生物工程杂志, 2011, 31(10): 106-112.
[15] 周露 董春娟 刘进元. 针对DREB亚族A-5组转录抑制子的人工microRNA的构建[J]. 中国生物工程杂志, 2011, 31(05): 0-0.