Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (3): 92-98    DOI: 10.13523/j.cb.20170313
综述     
谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色
张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹
哈尔滨师范大学生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室 哈尔滨 150025
Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses
ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong
College of Life Science and Technology, Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
 全文: PDF(417 KB)   HTML
摘要:

非生物胁迫因子如高盐、干旱、低温、重金属污染等严重影响植物的生长和繁殖。植物进化出一系列包括各种酶类物质的系统抵抗逆境所带来的氧化伤害。谷胱甘肽转移酶(glutathione S-transferase,GST,EC 2.5.1.18)是由多种功能的蛋白质组成的超家族,在植物遭受高盐、干旱、低温胁迫时,GSTs可清除活性氧,保护植物细胞膜结构和蛋白质活性。对谷胱甘肽转移酶在植物抵御非生物胁迫中的作用进行综述,为今后利用基因工程育种提供理论依据。

关键词: 非生物胁迫谷胱甘肽转移酶植物氧化伤害    
Abstract:

Abiotic stresses, such as high salt, drought, low temperature and heavy metal pollution, have seriously affected the growth and reproduction of plants. Meanwhile, plants have evolved a series of various enzymes system against oxidative damage caused by abiotic and biotic stresses. Glutathione S-transferase,which comprise a large superfamily of multifunctional protein, can scavenge reactive oxygen species and protect plant cell membrane structure and protein activity when plants were subjected to high salt, drought and low temperature stresses. The role of GST in plant response to abiotic stress is reviewed, and this will provide valuable information for the plant genetic engineering in the future.

Key words: Plant    Abiotic stress    Glutathione S-transferase    Oxidative damage
收稿日期: 2016-09-27 出版日期: 2017-03-25
ZTFLH:  Q81  
基金资助:

国家"863"计划(2013AA102607),国家自然科学基金(31470571),黑龙江省科技攻关项目(GA15B105-1),国家转基因生物新品种培育科技重大专项(2016ZX08004-002)资助项目

通讯作者: 郭长虹     E-mail: KaKu3008@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.

ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses. China Biotechnology, 2017, 37(3): 92-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170313        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I3/92

[1] Sandermann H. Plant metabolism of xenobiotics. Trends in Biochemical Sciences, 1992,17(2):82-84.
[2] Chi Y H, Cheng Y S, Vanitha J, et al. Expansion mechanisms and functional divergence of the glutathione S-transferase family in Sorghum and other higher plants. DNA Research, 2011,18(1):1-16.
[3] Anderson J V, Davis D G. Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologia Plantarum, 2004,120(3):421-433.
[4] Lan T, Yang Z, Yang X, et al. Extensive functional diversification of the Populus glutathione S-transferase supergene family. The Plant Cell, 2009,21(12):3749-3766.
[5] Liu Y, Han X, Ren L, et al. Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. Plant Physiology, 2013,161(2):773-786.
[6] Frova C. The plant glutathione transferase gene family:genomic structure, functions, expression and evolution. Physiologia Plantarum, 2003,119(4):469-479.
[7] Dixon D P, Sellars J D, Edwards R. The Arabidopsis phi class glutathione transferase AtGSTF2:binding and regulation by biologically active heterocyclic ligands. Biochemical Journal, 2011,438(1):63-70.
[8] Dixon D P,Cole D J, Edwards R. Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Molecular Biology, 1999,40(6):997-1008.
[9] Sommer A, Böger P. Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pesticide Biochemistry and Physiology, 1999,63(3):127-138.
[10] Marrs K A. The functions and regulation of glutathione S-transferases in plants.Annual Review of Plant Biology, 2003,47(1):127-158.
[11] 余叔文, 汤章城.植物生理与分子生物学. 北京:科学出版社.1998. She S W, Tang Z C. Plant physiology and molecular biology. Beijing:Science Press,1998.
[12] 陈晓亚,汤章城.植物生理与分子生物学.3版.北京:高等教育出版社,2007:329-356. Chen X Y, Tang Z C. Plant Physiology and Molecular Biology. 3rded. Beijing:Higher Education Press, 2007:329-356.
[13] Reinemer P, Dirr H W, Ladenstein R, et al. Three-dimensional structure of class π glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8Å resolution. Journal of Molecular Biology, 1992,227(1):214-226.
[14] Yang G Y, Wang Y C, Xia D, et al. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell, Tissue and Organ Culture (PCTOC), 2014,117(1):99-112.
[15] Xu J, Tian Y S, Xing X J, et al. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiologia Plantarum, 2016,156(2):164-175.
[16] Jia B, Sun M, Sun X L, et al. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiologia Plantarum, 2016,156(2):176-189.
[17] Kao C, Bakshi M, Sherameti I, et al. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant Molecular Biology, 2016,92(6):643-659.
[18] Chan C, Lam H. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant and Cell Physiology, 2014,55(3):570-579.
[19] Peltzer D,Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymes in two contrasting species:Fagus sylvatica and Coleus blumei. Plant Physiology and Biochemistry, 2002,40(2):141-150.
[20] Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 2004,51(1):45-56.
[21] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited. Annals of Botany, 2002,89(2):183.
[22] Wang Z,Huang S, Jia C, et al. Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Plant Cell Reports, 2013,32(9):1373-1380.
[23] Liu D, Liu Y, Rao J, et al. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Molecular Biology, 2013,47(4):515-523.
[24] Xu J, Xing X, Tian Y, et al. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One, 2015,10(9):e0136960.
[25] Ji W,Zhu Y M,Li Y, et al. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 2010,32(8):1173-1179.
[26] George S,Venkataraman G, Parida A. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010,167(4):311-318.
[27] Plazek A, Zur I. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Science, 2003,164(6):1019-1028.
[28] 杨德浩, 杨敏生, 王进茂, 等. 欧洲白桦苗期低温胁迫时膜系统的变化. 东北林业大学学报, 2004,32(6):13-15. Yang D H, Yang M S, Wang J M, et al.Europe Birch's membrane system changes under low temperature menace in the period of seedling.Journal of Northeast Forestry University, 2004,32(6):13-15.
[29] Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Archives of Biochemistry and Biophysics, 2005,444(2):139-158.
[30] Yang G Y, Xu Z G, Peng S B, et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Reports, 2015,35(3):681-692.
[31] Zhao J L, Zhang S H, Yang T F, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiologia Plantarum, 2015.154(3):381-394.
[32] Martret B L,Poage M,Shiel K, et al. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-xidant metabolism and improved abiotic stress tolerance. Plant Biotechnology Journal, 2011,9(6):661-673.
[33] Arduini I, Godbold D L, Onnis A. Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 1996,97(1):111-117.
[34] Moons A. Osgtu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003,553(3):427-432.
[35] Kumar S,Asif M H,Chakrabarty D, et al. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses.Journal of Hazardous Materials, 2013,248-249:228-237.
[36] Marrs K A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Biology, 1996,47(1):127-158.
[37] Bernard F,Dumez S,Brulle F, et al. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb. Environmental Science and Pollution Research, 2016,23(4):3136-3151.
[38] Yuan J S,Tranel P J,Stewart C N. Non-target-site herbicide resistance:a family business. Trends in Plant Science, 2007,12(1):6-13.
[39] Rea P A. Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 2007,58:347-375.
[40] Schröder P. The Role of Glutathione and Glutathione S-transferases in Plant Reaction and Adaptation to Xenobiotics. In Significance of Glutathione to Plant Adaptation to the Environment. Netherlands:Springer Netherlands, 2001:155-183.
[41] Hayes J D,Flanagan J U,Jowsey I R. Glutathione transferases. Annu Rev Pharmacol Toxicol, 2005,45:51-88.
[42] Sheehan D,Meadeg G, Foley V M. Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001,360(1):1-16.
[43] Coleman J,Blake-Kalff M, Davies E. Detoxification of xenobiotics by plants:chemical modification and vacuolar compartmentation. Trends in Plant Science,1997,2(4):144-151.
[44] Dixon D P,Lapthorn A,Edwards R. Plant glutathione transferases. Genome Biology, 2002,3(3):1-10.
[45] Chronopoulou E, Madesis P, Asimakopoulou B, et al. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris. Planta, 2011,235(6):1253-1269.
[46] Cicero L L,Madesis P, Tsaftaris A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochemistry, 2015,116:69-77.
[47] Jo H J,Lee J J.Kong K H. A plant-specific tau class glutathione S-transferase from Oryza sativa with very high activity against 1-chloro-2, 4-dinitrobenzene and chloroacetanilide herbicides. Pesticide Biochemistry and Physiology, 2011,101(3):265-269.
[48] Kim Y J, Lee O R, Lee S Y, et al. Isolation and characterization of a theta glutathione S-transferase gene from Panax ginseng meyer. Journal of Ginseng Research, 2012,36(4):449-460.
[49] Dourado D F A R, Fernandes P A, Mannervik B, et al. Isomerization of Δ5-androstene-3,17-dione into Δ4-androstene-3,17-dione catalyzed by human glutathione transferase A3-3:a computational study identifies a dual role for glutathione. Journal of Physical Chemistry A, 2014,118(31):5790-5800.
[50] Rahantaniaina M, Tuzet A, Mhamdi A, et al.Missing links in understanding redox signaling via thiol/disulfide modulation:how is glutathione oxidized in plants. Frontiers in Plant Science, 2013,4:1-13.
[51] Zhao J, Dixon R A. The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 2010,15(2):72-80.

[1] 刘旭霞,杨安珂. 美国SECURE规则评析及其对中国的启示[J]. 中国生物工程杂志, 2021, 41(9): 126-135.
[2] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[3] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[4] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[5] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[6] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[7] 李京霞,夏惠,吕秀兰,王进,梁东. 抗坏血酸的代谢和调控——以模式植物和园艺植物为例 *[J]. 中国生物工程杂志, 2018, 38(3): 105-114.
[8] 单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.
[9] 闫鹏程, 张占江, 裴智勇, 付延婷, 陈禹保, 刘彤. 药用植物保育云服务平台设计与实现[J]. 中国生物工程杂志, 2017, 37(11): 37-44.
[10] 陈敏, 陈慧, 包海, 黄鹏, 王延伟. 植物miRNA启动子研究进展[J]. 中国生物工程杂志, 2016, 36(5): 125-131.
[11] 王旭静, 张欣, 刘培磊, 王志兴. 复合性状转基因植物的应用现状与安全评价[J]. 中国生物工程杂志, 2016, 36(4): 18-23.
[12] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[13] 扈丽丽, 卓侃, 林柏荣, 廖金铃. 植物寄生线虫效应蛋白功能分析方法的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 101-108.
[14] 初易洋, 田慧琴, 许蕙金兰, 朱本忠. 植物多基因转化研究进展[J]. 中国生物工程杂志, 2016, 36(12): 111-116.
[15] 李东巧, 郭文姣, 陈芳. 基于专利分析的转基因药用植物技术发展趋势研究[J]. 中国生物工程杂志, 2016, 36(11): 98-108.