Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (11): 59-73    DOI: 10.13523/j.cb.20171109
研究报告     
转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析
张丽丽1, 徐碧玉1, 刘菊华1, 贾彩红1, 张建斌1, 金志强1,2
1. 中国热带农业科学院热带生物技术研究所 农业部热带作物生物学与遗传资源利用重点实验室 海口 571101;
2. 中国热带农业科学院海口实验站/海南省香蕉遗传育种改良重点实验室 海口 570102
Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress
ZHANG Li-li1, XU Bi-yu1, LIU Ju-hua1, JIA Cai-hong1, ZHANG Jian-bin1, JIN Zhi-qiang1,2
1. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou 571101, China;
2. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences/Hainan Provincial Key Laboratory for Genetics and Breeding of Banana, Haikou 570102, China
 全文: PDF(4003 KB)   HTML
摘要: 干旱是最重要的环境胁迫,香蕉MaASR1基因在植物响应逆境胁迫时发挥着重要作用,为了深入研究MaASR1基因的过表达使拟南芥抗旱的分子机制,利用全基因组表达芯片来广谱的筛选MaASR1基因转入后自然条件下及干旱处理条件下差异基因的表达情况。对基因芯片的结果进行了详细的生物信息学分析及相关基因的RT-PCR验证,结果表明MaASR1基因异源表达的拟南芥株系在自然生长条件下共有747个差异基因,其中上调基因559个,下调基因188个;在干旱胁迫条件下共得到653个差异基因,其中上调基因256个,下调基因397个; MaASR1基因的转入可以通过影响激素、光合作用、锌指蛋白及不依赖ABA途径的DREB2A等相关基因的表达来提高拟南芥的抗旱性。为解析MaASR1基因作为转录因子提高植物抗旱能力的分子机制奠定基础。
关键词: 基因实时荧光定量PCRMaASR1基因芯片生物信息学干旱胁迫    
Abstract: Drought is the most important environmental stress. MaASR1 gene of banana plays an important role in plant responding to stress. In order to further study the molecular mechanism of drought resistance for over expressing MaASR1 gene in Arabidopsis thaliana. DNA microarray was used to broad-spectrum screening the differentially expressed genes under natural and drought treatment in wild-type Arabidopsis thaliana and transgenic lines. The results of the DNA microarray were analyzed by bioinformatics and RT-PCR verification of the related genes. The results showed that when the wild-type Arabidopsis thaliana and transgenic lines were all without any treatment, there was a total of 747 differentially expressed genes, including 559 up-regulated genes and 188 down-regulated genes. And when the wild-type Arabidopsis thaliana and transgenic lines were all drought-treated, there was a total of 653 differentially expressed genes, including 256 up-regulated genes and 397 down-regulated genes. MaASR1 gene can increase the drought resistance of Arabidopsis thaliana by affecting the expression of hormone, photosynthesis, zinc finger protein and DREB2A which involved in the ABA-independent pathway. And to lay the foundation for the molecular mechanism of MaASR1 gene as a transcription factor to improve plant drought resistance.
Key words: MaASR1 gene    Drought stress    DNA microarray    Bioinformatics    Real-time quantitative PCR
收稿日期: 2017-08-14 出版日期: 2017-11-15
ZTFLH:  Q789  
基金资助: 国家香蕉产业技术体系品种改良(CARS-31)、转基因生物新品种培育国家科技重大专项(2016ZX08012005-007)、海南省重大专项(HNGDpz201502)资助项目
通讯作者: 金志强     E-mail: jinzhiqiang@itbb.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾彩红
刘菊华
张建斌
金志强
张丽丽
徐碧玉

引用本文:

张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.

ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress. China Biotechnology, 2017, 37(11): 59-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171109        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I11/59

[1] Shao H B, Chu L Y, Jaleel C A, et al. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol, 2009, 29(2):131-151.
[2] Ramsay G. DNA chips:State-of-the-art. Nat Biotechnol, 1998, 16(1):40-44.
[3] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J, 2002, 31(3):279-292.
[4] Kreps J A, Wu Y J, Chang H S, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 2002, 130(4):2129-2141.
[5] Brosche M, Vinocur B, Alatalo E R, et al. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6(12):R101.
[6] Street N R, Skogstrom O, Sjodin A, et al. The genetics and genomics of the drought response in Populus. Plant J, 2006, 48(3):321-341.
[7] Wang H G, Zhang H L, Gao F H, et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray. Theor Appl Genet, 2007, 115(8):1109-1126.
[8] Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, et al. Analysis of gene expression and physiological responses in three mexican maize landraces under drought stress and recovery irrigation. PLoS One, 2009, 4(10):e7531.
[9] Wilkins O, Waldron L, Nahal H, et al. Genotype and time of day shape the Populus drought response. Plant J, 2009, 60(4):703-715.
[10] Berta M, Giovannelli A, Sebastiani F, et al. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biology, 2010, 12(2):341-354.
[11] Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res, 2003, 31(10):2534-2543.
[12] Kawaguchi R, Girke T, Bray E A, et al. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J, 2004, 38(5):823-839.
[13] Zhou J L, Wang X F, Jiao Y L, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol, 2007, 63(5):591-608.
[14] Aprile A, Mastrangelo A M, De Leonardis A M, et al. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. Bmc Genomics, 2009, 10:279.
[15] Cohen D, Bogeat-Triboulot M B, Tisserant E, et al. Comparative transcriptomics of drought responses in Populus:a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. Bmc Genomics, 2010, 11:630.
[16] Gong P J, Zhang J H, Li H X, et al. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot, 2010, 61(13):3563-3575.
[17] Mittler R, Blumwald E. Genetic engineering for modern agriculture:challenges and perspectives. Annual Review of Plant Biology, 2010, 61:443-462.
[18] 王园. 香蕉ASR基因抗逆功能的研究. 海南:海南大学, 2010. Wang Y. Study of Function of MaASR1 Tolerance to Drought and Salt Resistance. Hainan:Hainan University, 2010.
[19] 苗红霞, 王园, 徐碧玉, 等. 香蕉MaASR1 基因的抗干旱作用. 植物学报, 2014, 49(5):548-559. Miao H X, Wang Y, Xu B Y, et al. The role of banana MaASR1 in drought stress tolerance. Chinese Bulletin of Botany, 2014, 49(5):548-559.
[20] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58(2):221-227.
[21] 姚庆群, 谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制. 热带农业科学, 2005, 25(4):80-85. Yao Q Q, Xie G S. The photosynthetic stomatal and nonstomatal limitation under drought stress. Chinese Journal of Tropical Agriculture, 2005, 25(4):80-85.
[22] Earl H J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ Exp Bot, 2002, 48(3):237-246.
[23] 向勇. 水稻抗逆境相关基因的分离和功能分析. 武汉:华中农业大学, 2008. Xiang Y. Isolation and Functional Characterization of Rice Stress-related Genes. Wuhan:Huazhong Agricultural University, 2008.
[24] Kalifa Y, Gilad A, Konrad Z, et al. The water-and salt-stress-regulated Asr1(abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J, 2004, 381:373-378.
[25] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45(14):1465-1474. Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chinese Science Bulletin, 2000, 45(14):1465-1474.
[26] Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136(1):2734-2746.
[27] 郭英慧. 棉花CCCH型锌指蛋白基因GhZEP1的分离、功能鉴定及其作用机制的研究. 泰安:山东农业大学, 2007. Guo Y H. Isolation and Function Identification of a Novel CCCH-type Zinc Finger Protein Gene GhZFP1 in Cotton. Taian:Shandong Agricultural University, 2007.
[28] 吴学闯, 曹新有, 陈明, 等. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析. 植物遗传资源学报, 2010, 11(3):343-348. Wu X C, 2, Cao X Y, Chen M, et al. Isolation and expression pattern assay of a C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycinemax (L.). Journal of Plant Genetic Resources, 2010, 11(3):343-348.
[29] Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5):1292-1309.
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[3] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[4] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[5] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[6] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[7] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[8] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[9] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[10] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[11] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[12] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[13] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[14] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[15] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.