Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (8): 139-144    
综述     
酿酒酵母的"组学"技术研究进展及其在工程菌株构建中的应用
张晓阳1, 李余动2, 吴雪昌2
1. 河南天冠企业集团有限公司 车用生物燃料技术国家重点实验室 南阳 473000;
2. 浙江大学生命科学学院 微生物研究所 杭州 310058
Research Progress of "Omics" Technologies and Its Application in Construction of Engineering Strain of Saccharomyces cerevisiae
ZHANG Xiao-yang1, LI Yu-dong2, WU Xue-chang2
1. State Key Laboratory of Motor Vehicle Biofuel Technology,Tianguan Group Co.,Ltd,Nanyan 473000,China;
2. Institute of Microbiology,College of Life Science,Zhejiang University,Hangzhou 310058,China
 全文: PDF(712 KB)   HTML
摘要:

酿酒酵母是真核模式生物,已被广泛用于 "组学"水平的研究。"组学"技术主要由基因组学、转录组学、蛋白质组学及代谢组学构成。综述了酵母菌"组学"的研究进展,并论述了酵母菌"组学"技术在酵母菌菌株改造中的应用,包括酒类及生物燃料乙醇工业生产菌株的基因工程改造等。

关键词: 酿酒酵母组学技术菌种改造    
Abstract:

The budding yeast,Saccharomyces cerevisiae,has been used as eukaryotic model organism in "ome" level research. "Omics" technologies were mainly composed of genomics,transcriptomics,proteomics and metabolomics. The recent advancements of "ome" level research in yeast were surveyed,then their application in strain improvement by genetic engineering was discussed,including the industrial yeast strains in bioethanol and winemaking processes.

Key words: Saccharomyces cerevisiae    Omics technology    Strain improvement
收稿日期: 2011-05-30 出版日期: 2011-08-25
ZTFLH:  Q939.9  
基金资助:

国家"863"计划资助项目(2008AA10Z338-02)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张晓阳, 李余动, 吴雪昌. 酿酒酵母的"组学"技术研究进展及其在工程菌株构建中的应用[J]. 中国生物工程杂志, 2011, 31(8): 139-144.

ZHANG Xiao-yang, LI Yu-dong, WU Xue-chang. Research Progress of "Omics" Technologies and Its Application in Construction of Engineering Strain of Saccharomyces cerevisiae. China Biotechnology, 2011, 31(8): 139-144.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I8/139


[1] Legras J L,Merdinoglu D,Cornuet J M,et al. Bread,beer and wine:Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology,2007,16(10):2091-2102.

[2] Goffeau A,Barrell B G,Bussey H,et al. Life with 6000 genes. Science,1996,274(5287):546,563-547.

[3] 赵心清,白凤武,李寅. 系统生物学和合成生物学研究在生物燃料生产菌株改造中的应用. 生物工程学报,2010,26(7):880-887. Zhao X Q,Bai F W,Li Y. Chinese Journal of Bioechnolgy,2010,26(7):880-887.

[4] Strack L,Stahl U. "Omics" technologies and their input for the comprehension of metabolic systems particularly pertaining to yeast organisms. Progress in Botany,2011,72:105-122.

[5] 秦丽娜,江贤章,田宝玉,等. 代谢工程在酿酒酵母菌育种中的应用研究进展. 食品与发酵工业,2007,33(012):104-110. Qin L N,Jiang X Z,Tian B Y,et al. Food and Fermentation Industries,2007,33(012):104-110.

[6] Borneman A R,Chambers P J,Pretorius I S. Yeast systems biology:modelling the winemaker's art. Trends in Biotechnology,2007,25(8):349-355.

[7] Wei W,McCusker J H,Hyman R W,et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12825-12830.

[8] Liti G,Carter D M,Moses A M,et al. Population genomics of domestic and wild yeasts. Nature,2009,458(7236):337-341.

[9] Borneman A R,Forgan A H,Pretorius I S,et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Research,2008,8(7):1185-1195.

[10] Novo M,Bigey F,Beyne E,et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America,2009,106(38):16333-16338.

[11] Borneman A R,Desany B A,Riches D,et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genetics,2011,7(2):e1001287.

[12] Cliften P,Sudarsanam P,Desikan A,et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science,2003,301(5629):71-76.

[13] Schacherer J,Shapiro J A,Ruderfer D M,et al. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature,2009,458(7236):342-345.

[14] Klipp E,Nordlander B,Kruger R,et al. Integrative model of the response of yeast to osmotic shock. Nature Biotechnology,2005,23(8):975-982.

[15] DeRisi J L,Iyer V R,Brown P O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science,1997,278(5338):680-686.

[16] Alexandre H,Ansanay-Galeote V,Dequin S,et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters,2001,498(1):98-103.

[17] Gasch A P,Spellman P T,Kao C M,et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell,2000,11(12):4241-4257.

[18] Marks V D,Ho Sui S J,Erasmus D,et al. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research,2008,8(1):35-52.

[19] Blieck L,Toye G,Dumortier F,et al. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Applied and Environmental Microbiology,2007,73(3):815-824.

[20] Wang Z,Gerstein M,Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics,2009,10(1):57-63.

[21] Nagalakshmi U,Wang Z,Waern K,et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,320(5881):1344-1349.

[22] Haynes P A,Yates J R. Proteome profiling-pitfalls and progress. Yeast,2000,17(2):81-87.

[23] Insenser M R,Hernaez M L,Nombela C,et al. Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. Journal of Proteomics,2010,73(6):1183-1195.

[24] Helbig A O,de Groot M J,van Gestel R A,et al. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics,2009,9(20):4787-4798.

[25] Pham T K,Chong P K,Gan C S,et al. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. Journal of Proteome Research,2006,5(12):3411-3419.

[26] Krogan N J,Cagney G,Yu H,et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature,2006,440(7084):637-643.

[27] Hesselberth J R,Miller J P,Golob A,et al. Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biology,2006,7(4):30.

[28] Costenoble R,Picotti P,Reiter L,et al. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Molecular Systems Biology,2011,7:464.

[29] Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews:MMBR,2008,72(3):379-412.

[30] Devantier R,Scheithauer B,Villas-Boas S G,et al. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology and Bioengineering,2005,90(6):703-714.

[31] Villas-Boas S G,Kesson M,Nielsen J. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Research,2005,5(8):703-709.

[32] O'Hagan S,Dunn W B,Brown M,et al. Closed-loop,multiobjective optimization of analytical instrumentation:gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry,2005,77(1):290-303.

[33] Smedsgaard J,Nielsen J. Metabolite profiling of fungi and yeast:from phenotype to metabolome by MS and informatics. Journal of Experimental Botany,2005,56(410):273-286.

[34] Oliver S G,Winson M K,Kell D B,et al. Systematic functional analysis of the yeast genome. Trends in Biotechnology,1998,16(9):373-378.

[35] Rossignol T,Postaire O,Storai J,et al. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Applied Microbiology and Biotechnology,2006,71(5):699-712.

[36] Ostergaard S,Olsson L,Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews:MMBR,2000,64(1):34-50.

[37] Howell K S,Cozzolino D,Bartowsky E J,et al. Metabolic profiling as a tool for revealing Saccharomyces interactions during wine fermentation. FEMS Yeast Research,2006,6(1):91-101.

[38] Argueso J L,Carazzolle M F,Mieczkowski P A,et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Research,2009,19(12):2258-2270.

[39] Wu X C,Chi X Q,Wang P M,et al. The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes. Biology Direct 2010,5:46:2-10.

[40] Zheng D Q. Wu X C,Wang P M,et al. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol, 2011,38:415-422.

[41] Zheng D Q,Wu X C,Tao X L,et al. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology,2011,102:3020-3027.

[42] Snyder M , Gallagher J E. Systems biology from a yeast omics perspective. FEBS Letters,2009,583:3895-3899.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[5] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[6] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[9] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[10] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[11] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[12] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[13] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[14] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[15] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.