Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (2): 59-65    DOI: 10.13523/j.cb.20150209
技术与方法     
头孢菌素C酰化酶突变位点的研究
徐雪丽1,2, 张伟1, 刘艳1, 谢丽萍1, 胡又佳1
1. 中国医药工业研究总院张江分院 上海 201203;
2. 上海医药工业研究院 上海 200437
Study on Mutations of Cephalosporin C Acylase
XU Xue-li1,2, ZHANG Wei1, LIU Yan1, XIE Li-ping1, HU You-jia1
1. China State Institute of Pharmaceutical Industry Zhangjiang Institute, Shanghai 201203, China;
2. Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, China
 全文: PDF(707 KB)   HTML
摘要:

头孢菌素C酰化酶能直接将头孢菌素C(CPC)转化为7-氨基头孢烷酸(7-ACA),此一步酶法具有很大的经济价值,所以得到很多研究者的关注,特别是提高CPC酰化酶活性及专一性的研究。以CPC酰化酶基因 ecs50 为基础,利用重叠延伸PCR,对文献报道的活性提高的突变体酶S12的6个位点分别进行突变,将得到的6个突变体V122A、G140S、F297N、I314T、I415V、S710L进行诱导纯化后,检测酶活,以此来研究不同突变位点对酶活力的影响。结果V122A的比活为106U/mg,它的转化效率比初始酶提高23.7%。

关键词: CPC酰化酶重叠延伸PCR酶活头孢菌素C7-氨基头孢烷酸    
Abstract:

Cephalosporin C acylase can directly convert cephalosporin C (CPC) to 7-aminocephalosporanic acid (7-ACA), and this one-step enzymatic process has great economic value. A lot of researchers pay attention on it, especially on how to improve the activity and specificity of CPC acylase. The reported CPC acylase mutant S12 has an improved activity that contains 6 point mutations. On the basis of ecs50 gene, six individual mutations (V122A,G140S,F297N,I314T,I415V,S710L) were obtained by using the overlap PCR. Then recombinant proteins were purified after induction, enzymatic activities were tested to study the relationship between different mutation site and the activity of CPC acylase. The result showed that mutant V122A had an increase activity by 23.7% compared to ECS50.

Key words: CPC acylase    Overlap extension PCR    Enzyme activity    Cephalosporin C    7-aminocephalosporanic acid
收稿日期: 2014-11-11 出版日期: 2015-02-25
ZTFLH:  Q819  
基金资助:

国家"十二五"重大新药科技专项(2011ZX09203-001-06)、上海市科委科技支撑项目(1343100204)资助项目

通讯作者: 胡又佳     E-mail: bebydou@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐雪丽, 张伟, 刘艳, 谢丽萍, 胡又佳. 头孢菌素C酰化酶突变位点的研究[J]. 中国生物工程杂志, 2015, 35(2): 59-65.

XU Xue-li, ZHANG Wei, LIU Yan, XIE Li-ping, HU You-jia. Study on Mutations of Cephalosporin C Acylase. China Biotechnology, 2015, 35(2): 59-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150209        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I2/59


[1] Fechtig B, Peter H, Bickel H, et al. Concerning the preparation of 7-amino-cephalosporanic acid. Helvetica Chimica Acta, 1968, 51(5):1108-1119.

[2] Conlon H D, Baqai J, Baker K, et al. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnology and Bioengineering, 1995, 46(6):510-513.

[3] Fritz-Wolf K, Koller K P, Lange G, et al. Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Protein Science, 2002, 11(1):92-103.

[4] Lopez-Gallego F, Batencor L, Hidalgo A, et al. One-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. Advanced Synthesis & Catalysis, 2005, 347(14):1804-1810.

[5] Aramori I,Fukagawa M,Tsumura M,et al.Isolation of soil strains producing new cephalesporin acylases.Journal of Fermentation and Bioengineering,1991,72(4):227-231.

[6] Saito Y, Fujimura T, Ishii Y,et al. Saito Y F, Ishii Y,et al. Oxidative modification of acephalosporin C acylase from Pseudomonas strain N176 and site-directed mutagenesis of the gene. Applied and Environment Microbiology, 1996, 62(8):2919-2925.

[7] Ishii Y,Satio Y, Fujimura T,et al.High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. European Journal of Biochemistry, 1995,6, 230(2):773-778.

[8] Pollegioni L, Lorenzi S, Rosini E, et al. Evolution of an acylase active on cephalosporin C. Protein Science, 2005, 14(12):3064-3076.

[9] Shin Y C, Jeon J Y, Jung K H, et al. Cephalosporin C acylase mutant and method for preparing 7-ACA using same.US Patent 0,207,519,2007.

[10] 任羽,张建安, 朱玉山,等. 头孢菌素C 酰化酶S12 在不同原核系统中的表达. 科技创新导报, 2012,12:226-228. Ren Y, Zhang J A, Zhu Y S,et al. Expression of cephalosporin C acylase S12 in different prokaryotic systems. Science and Technology Innovation Herald, 2012,12:226-228.

[11] 王颖秋,郑林冲,谢丽萍等. 基于易错 PCR 的头孢菌素 C 酰化酶的定向进化. 中国医药工业杂志, 2013, 44(4):344-347. Wang Y Q, Zheng L Q, Xie L P,et al. Directed evolution of cephalosporin C acylase activity by Error-prone PCR.Chinese Journal of Pharmaceuticals, 2013, 44(4):344-347.

[12] Horton R M, Cai Z L, Ho S N, et al. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques, 1990, 8(5):528-535.

[13] 王华,文一, 于寒松,等. 重叠延伸PCR技术构建β-环糊精葡糖基转移酶基因的定点突变原核表达载体. 食品工业科技, 2013, 19(34):145-151. Wang H,Wen Y, Yu H S,et al. Site-directed mutagenesis of β-CGTase and expression vector construction by overlap extension PCR. Science and Technology of Food Industry, 2013, 19(34):145-151.

[14] 王 春,陈琳玲, 许灿新,等. 简便快速的PCR产物回收方法. 南华大学学报, 2005,33(1):109-111. Wang C,Chen L L,Xu C X,et al. Comparison of several methods of extracting PCR products from Agarose Gel. Journal of Nanhua University(Medical Edition), 2005,33(1):109-111.

[15] 安明,于慧敏,罗晖,等. CPC酰化酶基因的人工合成与重组表达. 清华大学学报(自然科学版), 2008, 9:1499-1503. An M, Yu H M,Luo H,et al. Artificial synthesis and expression of the CPC acylase gene in recombinant E. coli.Journal of Tsinghua Univesity(Science and Technology), 2008, 9:1499-1503.

[16] Conti G, Pollegioni L, Molla G, et al. Strategic manipulation of an industrial biocatalyst--evolution of a cephalosporin C acylase. The FEBS Journal, 2014, 281(10):2443-2455.

[17] Li Y, Chen J, Jiang W, et al. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. European Journal of Biochemistry/FEBS, 1999, 262(3):713-719.

[18] Xiao Y, Huo X, Qian Y, et al. Engineering of a CPC acylase using a facile pH indicator assay. Journal of Industrial Microbiology & Biotechnology, 2014,41(11):1617-1625.

[19] Wang Y, Yu H, Song W, et al. Overexpression of synthesized cephalosporin C acylase containing mutations in the substrate transport tunnel. Journal of Bioscience and Bioengineering, 2012, 113(1):36-41.

[20] Li Q, Huang X, Zhu Y. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking. Journal of Molecular Modeling, 2014, 20(7):2314.

[1] 杨林,王柳月,李慧美,陈华波. 改进的多片段重叠延伸PCR制作基因多位点突变 *[J]. 中国生物工程杂志, 2019, 39(8): 52-58.
[2] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[3] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[4] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[5] 李佩忆,周于聪,李雅乾,陈捷. 深绿木霉中碳代谢抑制因子CRE1功能特性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 17-25.
[6] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[7] 郭晓璐,龚秀芳,陈家锋,丁晨曦,胡丹,潘秀珍,王长军. 2型猪链球菌磷酸甘油酸激酶基因的克隆表达及酶活性测定 *[J]. 中国生物工程杂志, 2018, 38(3): 16-23.
[8] 张玉富, 王建文, 李松涛, 朱张亮, 路福平, 毛淑红, 秦慧民. 来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析[J]. 中国生物工程杂志, 2017, 37(6): 43-49.
[9] 王笃强, 沈云龙, 廖远平, 李德彬, 刘虹均, 陈帅, 卢大儒, 朱化星. 循环酶法同型半胱氨酸检测关键酶CBS和CBL的开发及试剂盒研制初探[J]. 中国生物工程杂志, 2017, 37(2): 81-87.
[10] 王路路, 权春善, 许永斌, 陈金利, 吴懿, 王冠天, 董悦生. 金黄色葡萄球菌arl双组分信号转导系统受体蛋白ArlSCA的表达、纯化及活性研究[J]. 中国生物工程杂志, 2017, 37(11): 52-58.
[11] 徐一帆, 刘明秋. 非限制性内切核酸酶Sma的表达纯化工艺及性能研究[J]. 中国生物工程杂志, 2017, 37(11): 89-93.
[12] 李达, 代鹏, 王伟, 张文涛, 汪钦, 束毅, 祝春来, 纪奇峰, 梁平, 颜真. PLCE1基因及rs2274223和rs3765524单体型的克隆与表达[J]. 中国生物工程杂志, 2016, 36(12): 1-7.
[13] 温赛, 刘怀然, 续丹丹. 溶菌酶及其分子改造研究进展[J]. 中国生物工程杂志, 2015, 35(8): 116-125.
[14] 李小鑫, 高明昊, 张苗苗, 刘晓晨, 乔长晟. 溶解氧对γ-聚谷氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 42-48.
[15] 黎亮, 王泽建, 郭美锦, 储炬, 庄英萍, 张嗣良. 头孢菌素C产生菌的诱变育种及培养基优化[J]. 中国生物工程杂志, 2014, 34(8): 61-66.