Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 17-25    DOI: 10.13523/j.cb.20180603
    
深绿木霉中碳代谢抑制因子CRE1功能特性研究 *
李佩忆,周于聪,李雅乾(),陈捷
上海交通大学农业与生物学院 农业部都市农业(南方)重点实验室 上海 200240
Study on Functional Properties of Carbon Catabolite Repressor CRE1 in Trichoderma atroviride
Pei-yi LI,Yu-cong ZHOU,Ya-qian LI(),Jie CHEN
School of Agriculture and Biology,Shanghai Jiao Tong University,Key Laboratory of Urban Agriculture (South) Ministry of Agriculture,Shanghai 200240,China
 全文: PDF(2759 KB)   HTML
摘要:

木霉菌(Trichoderma spp.)是一种广泛存在于土壤及植物根系生境中的丝状真菌,具有拮抗植物病原真菌和促进植物生长的双重功效。碳代谢抑制子CRE1全局性调控细胞生长代谢过程,保障木霉在不同生境中的存活及拮抗病原菌特性。比较深绿木霉(T.atroviride)T23及其Cre1突变株(T23Δcre1)在不同培养基中的生长和代谢特性,结果表明:cre1基因沉默后,T23Δcre1较T23菌丝生长变慢,产孢滞后且降低一个数量级,cre1对菌丝生长和产孢的调控依赖于培养基组分。此外,cre1基因抑制几丁质酶、β-1,3-葡聚糖酶基因转录,区别性调控部分次级代谢合成的非核糖体肽合成酶NRPS和聚酮合成酶PKS基因的表达。综上,碳代谢因子CRE1作为一个多效性的转录调控因子,抑制细胞壁降解酶和代谢产物合成相关的基因表达,赋予木霉菌在环境中的适应性和竞争性,是深绿木霉T23生长的必要因子。

关键词: 深绿木霉T23碳代谢抑制因子CRE1生长酶活特性次级代谢合成基因    
Abstract:

The genus Trichoderma comprises a large number of strains found in multitude of ecological niches. Some of them have been developed as biocontrol agents against plant diseases, which can antagonize plant pathogens and facilitate the growth of plants at the same time, showing an important value for biocontrol in agriculture. Carbon catabolite repression (CCR) is a wide-domain regulatory circuit, allowing the preferred assimilation of carbon sources of high nutritional value over others. CCR is mediated by the Cys2His2 type transcription factor CreA/CREI which has been cloned from numerous filamentous fungi. The latest studies have found that CRE1, the carbon catabolite repressor, regulates cell growth and metabolic procedures of Trichoderma spp., which would be helpful for strains’ antagonism against various pathogens and their own survival at different habitats.On basis of wide type strain T.atroviride 23, T23 and its cre1 knock out mutant strain T23 Δcre1 kept in laboratory, the phenotypic assays and function analysis of both strains have been carried out on different mediums to draw the following conclusions. Firstly, the cre1 gene in Trichoderma is essential for the growth and sporulation of T.atroviride. When cre1 is knocked out, the growth rate of T23 Δcre1 slows down, and its sporulation apparently lags behind that of T23 with the number of spores reduced an order of magnitude; Furthermore, the response of T23 Δcre1 to carbon sources and nitrogen sources are diffirent from those of T23. The results further indicate cre1-mediated regulation of growth and formation of sporulation depends on specific culture. Secondly, how CRE1 regulates the expression of some cell-wall degraditon enzymes, such as chitnase, β-1,3-glucanase, protease and cellulase, is detected. Results of enzyme activity assay on plate and qRT-PCR show that CRE1 represses the expression of the chitianse and β-1,3-glucanase obviously. In line with that, transcription activity of two enzyme activity encoding genes, chit42 and glucanase, respectively increase by 2 times and 4 times in T23Δcre1 compared with in T23. Enzyme activity comparison of cellulase and protease conducted on plate also indicates a higher activity level in T23Δcre1 rather than in T23. Finally, the regulation of CRE1 on the expression of several non-ribosomal peptides synthases (NRPSs) and polyketide synthases (PKSs), which are found in charge of the synthesis of most valuable secondary metabolies for biocontrol, are deterimined. According to results of qRT-PCR, CRE1 plays a complicate role in the regulation on the transcription of NRPSs and PKSs. Among the three choosen NRPS encoding genes, the knock out of cre1 results in an increase of 8.72-fold expression of NRPS2, while NRPS1 expression is reduced to 1/2 and expression of NRPS3 is not significantly changed. Also, expression of PKS3 coding conidia pigment formation in T23Δcre1 increases by 3 times compared with that in T23,and PKS1 expression is detected being inhibited in T23. Thus, CRE1 indirectly affects the synthesis and secretion of Trichoderma secondary metabolites.In conclusion, carbon catabolite repressor CRE1 regulates mycelia growth, secondary metabolites biosynthesis, which is exactly of great importance in biocontrol procedure of T.atroviride. Those findings are pretty valuable for controlling synthesis and secretion of metabolites of T.atroviride and further to improve its biocontrol effects.

Key words: Trichoderma atroviride 23    Carbon catabolite repressor CRE1    Growth    Enzyme activity characteristics    Secondary metabolism synthesis genes
收稿日期: 2017-12-17 出版日期: 2018-07-06
ZTFLH:  Q291  
基金资助: * 国家自然科学基金((31201557));上海市自然科学基金((12ZR1414100));高等学校博士学科点新教师专项科研基金资助项目((20120073120070))
通讯作者: 李雅乾     E-mail: lauren@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李佩忆
周于聪
李雅乾
陈捷

引用本文:

李佩忆,周于聪,李雅乾,陈捷. 深绿木霉中碳代谢抑制因子CRE1功能特性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 17-25.

Pei-yi LI,Yu-cong ZHOU,Ya-qian LI,Jie CHEN. Study on Functional Properties of Carbon Catabolite Repressor CRE1 in Trichoderma atroviride. China Biotechnology, 2018, 38(6): 17-25.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180603        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/17

菌株 特征 来源
T23 上海交通大学木霉菌菌种保藏管理中心
T23Δcre1 T23菌株缺失cre1基因突变株 同上
qRT-PCR引物 序列(5'-3')
NRPS1-F GATGAGACCACGCTTTCC
NRPS1-R TATAGCACCCGGTAAGTCG
NRPS2-F ACAAAATTGCGCGAGACGAAC
NRPS2-R ATTCACTTCAGGCACTCGGAT
NRPS3-F TAGTCTCGCCGCAGAAGCA
NRPS3-R GCAAGTTGTGATGAATAGTGT
PKS1-F AAGACAATCCAACCTATCGGGCCA
PKS1-R TCTGCAACATCACAAGGCACAACG
PKS2-F CGCGCAACTTCAACGCTCTTACAA
PKS2-R TCATAGGCACAAATACCTCCCGCA
Chit42-F TTCCCGCAAGCAAGAT
Chit42-R GTAGTCCCAAATACCGTTC
Glu-F GAGACCAACTACGACCAGG
Glu-R TTTGTTTCCATCGCACC
表1  实验所用菌株与主要引物
图1  T23Δcre1与T23平板生长表型比较
图2  SM基础培养基中T23与T23Δcre1对不同碳源的表型差异
图3  PN基础培养基中T23与T23Δcre1对不同碳源表型差异
图4  PN与SM培养基中T23Δcre1与T23的菌丝生长情况
图5  cre1对几丁质酶活与葡聚糖酶活的影响
图6  cre1对纤维素酶活与蛋白酶活的影响
ID gene T23(T.atroviride) Δcre1 (T.atroviride) Folda
CT β-actin CT T23 ΔCT T23 CT β-actin CT Δcre1 ΔCT Δcre1
48813 NRPS1 20.04±0.30 31.24±0.31 11.20 22.33±0.42 34.42±0.30 12.09 0.54
52932 NRPS2 20.04±0.30 32.52±0.74 12.48 22.33±0.42 31.69±0.16 9.36 8.72
39887 NRPS3 20.40±0.40 26.02±1.27 5.98 22.33±0.30 28.15±0.12 5.82 1.12
33092 PKS1 20.04±0.30 29.73±014 9.69 22.33±0.42 31.77±0.01 9.44 1.19
79 PKS3 20.04±0.30 26.46±0.29 6.42 22.33±0.43 27.22±0.24 4.89 2.88
表2  CRE1对NRPSs与PKSs编码基因转录水平的影响
[1] Woo S L, Lorito M . Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol//Vurro M. Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Dordrecht: Springer, 2007: 107-130.
[2] Keswani C, Mishra S, Sarma B K , et al. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol, 2014,98(2):533-544.
doi: 10.1007/s00253-013-5344-5
[3] Mach R L, Strauss J, Zeilinger S , et al. Carbon catabolite repression of xylanase I (xynl) gene expression in Trichoderma reesei. Molecular Microbiology, 1996,21(6):1273-1281.
doi: 10.1046/j.1365-2958.1996.00094.x pmid: 8898395
[4] Würleitner E, Pera L, Wacenovsky C , et al. Transcriptional regulation of xyn2 in Hypocrea jecorina. Eukaryotic Cell, 2003,2(1):150-158.
doi: 10.1128/EC.2.1.150-158.2003 pmid: 12582132
[5] Silva-Rocha R, Castro L D S, Antonie^to A C C, et al. Deciphering the cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. Plos One, 2014,9(6):e99366.
doi: 10.1371/journal.pone.0099366 pmid: 4062390
[6] Carsolio C , Gutie'rrez A, Jime'nez B, et al. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA, 1994,91(23):10903-10907.
doi: 10.1073/pnas.91.23.10903 pmid: 7971981
[7] Portnoy T, Margeot A, Linke R , et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011,12(1):269.
doi: 10.1186/1471-2164-12-269 pmid: 3124439
[8] Vinale F, Marra R, Scala F , et al. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol, 2006,43(2):143-148.
doi: 10.1111/j.1472-765X.2006.01939.x pmid: 16869896
[9] Mukherjee P K, Horwitz B A, Herrera-Estrella A , et al. Trichoderma research in the genome era. Annu Rev Phytopathol, 2013,51(51):105-129.
doi: 10.1146/annurev-phyto-082712-102353 pmid: 23915132
[10] Atanasova L, Crom S L, Gruber S , et al. Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC genomics, 2013,14(1):121-121.
doi: 10.1186/1471-2164-14-121 pmid: 3599271
[11] 孙瑞艳 . 中国南方地区木霉菌资源收集、鉴定与生防功能评价研究. 上海:上海交通大学, 2013.
Sun R Y . Study on the collection, identification and biocontrol function evaluation of Trichoderma species in southern China. Shanghai: Shanghai Jiao Tong University, 2013.
[12] 周于聪 . 改良ATMT转化技术在深绿木霉基因敲除中的应用. 中国生物工程杂志, 2015,35(12):58-64.
doi: 10.13523/j.cb.20151209
Zhou Y C . Application of improved ATMT transformation in gene knock-out of Trichoderma atroviride. China Biotechnology, 2015,35(12):58-64.
doi: 10.13523/j.cb.20151209
[13] Wu Q, Bai L, Liu W , et al. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. J Microbiol, 2013,51(2):166-173.
doi: 10.1007/s12275-013-2321-8 pmid: 23625216
[14] Miller G L . Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959,31(3):426-428.
doi: 10.1021/ac60147a030
[15] 王世媛 . 非核糖体肽合成酶(NRPSs)作用机理与应用的研究进展. 微生物学报, 2007,47(4):734-737.
doi: 10.3321/j.issn:0001-6209.2007.04.034
Wang S Y . Research progress on mechanism and application of non-ribosomal peptide synthase (NRPSs). Acta Microbiologica Sinica, 2007,47(4):734-737.
doi: 10.3321/j.issn:0001-6209.2007.04.034
[16] Reino J L, Guerrero R F, Herná ndez-Gala'n R, et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev, 2008,7(1):89-123.
doi: 10.1007/s11101-006-9032-2
[1] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[2] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[5] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[6] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[7] 宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.
[8] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[9] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[10] 刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.
[11] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[12] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[13] 孙鉴锋, 王建新. 一种基于E-index方法区分复杂性状的分析工具[J]. 中国生物工程杂志, 2017, 37(2): 93-100.
[14] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[15] 龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.