Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (6): 43-49    DOI: 10.13523/j.cb.20170607
研究报告     
来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析
张玉富1, 王建文1, 李松涛1, 朱张亮1, 路福平1,2,3, 毛淑红1,2,3, 秦慧民1,2,3
1. 天津科技大学生物工程学院 天津 300457;
2. 天津科技大学工业发酵微生物教育部重点实验室 天津 300457;
3. 工业酶国家工程实验室 天津 300457
The Expression, Purification and Structural Analysis of Cholesterol Oxidase ChOG
ZHANG Yu-fu1, WANG Jian-wen1, LI Song-tao1, ZHU Zhang-liang1, LU Fu-ping1,2,3, MAO Shu-hong1,2,3, QIN Hui-min1,2,3
1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
2. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China;
3. National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
 全文: PDF(925 KB)   HTML
摘要: 胆固醇氧化酶是胆固醇代谢过程中的关键酶,临床上用胆固醇氧化酶作为检测血清胆固醇含量的应用潜力巨大。将来源于红球菌Rhodococcus ruber的胆固醇氧化酶ChOG,分别转化到大肠杆菌宿主BL21(DE3)和Rosetta(DE3)中,在不同条件下进行诱导表达,结果表明:BL21(DE3)菌株在诱导温度为16℃、IPTG浓度为0.1 mmol/L时,ChOG可溶性表达量最高 (0.49 mg/ml)。ChOG的最适反应温度为30℃,最适反应pH为7.5。最适反应条件下,酶活性达到8.0 U/mg。利用TLC、HPLC对ChOG催化产物胆甾-4-烯-3-酮进行了鉴定分析。三维结构及定点突变分析表明Glu406及Arg408、Glu261在进行胆固醇C3羟基的脱氢、质子传递,以及底物异构化方面发挥着重要作用。
关键词: 分离纯化结构分析酶活力测定ChOG胆固醇氧化酶    
Abstract: Cholesterol oxidase is a key enzyme during cholesterol metabolism. It could be potential used to detect the cholesterol level in serum in clinical trials. The cholesterol oxidase from Rhodococcus ruber (ChOG) was transformed into BL21(DE3) and Rosetta(DE3) for protein expression, and was induced at different conditions. The results showed that ChOG was overexpressed at 16℃ and 0.1 mmol/L IPTG. The activity reached 8.033 U/mg after purification with Ni-NTA superflow. The product cholest-5-en-3-one was characterized by TLC and HPLC, respectively. The structural analysis showed that Glu406, together with Arg408 and Glu261 played an important role during the dehydrogenation of cholesterol C3-OH, proton transfer, and isomerization.
Key words: ChOG    Structural analysis    Activity assay    Cholesterol oxidase
收稿日期: 2016-12-16 出版日期: 2017-06-25
ZTFLH:  Q819  
基金资助: 天津市科技支撑计划(14ZCZDSY00012)、国家高技术研究发展计划项目(2011AA02A211-06)、国家自然科学基金(21206127)资助项目
通讯作者: 毛淑红, 秦慧民     E-mail: shuhongmao@tust.edu.cn;huiminqin@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张玉富
李松涛
路福平
毛淑红
王建文
朱张亮
秦慧民

引用本文:

张玉富, 王建文, 李松涛, 朱张亮, 路福平, 毛淑红, 秦慧民. 来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析[J]. 中国生物工程杂志, 2017, 37(6): 43-49.

ZHANG Yu-fu, WANG Jian-wen, LI Song-tao, ZHU Zhang-liang, LU Fu-ping, MAO Shu-hong, QIN Hui-min. The Expression, Purification and Structural Analysis of Cholesterol Oxidase ChOG. China Biotechnology, 2017, 37(6): 43-49.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170607        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I6/43

[1] Zhang H, Liu R, Zheng J. Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode. Analyst, 2012, 137(22):5363-5367.
[2] Uhia I, Galan B, Morales V, et al. Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2155. Env Microbiol Rep, 2011, 13(4):943-959.
[3] Doukyu N, Nihei S. Cholesterol oxidases with high catalytic activity from Pseudomonas aeruginosa:Screening, molecular genetic analysis, expression and characterization. J Biosci Bioeng, 2015, 120(1):24-30.
[4] Doukyu N. Characteristics and biotechnological applications of microbial cholesterol oxidases. Appl Microbiol Biot, 2009, 83(5):825-837.
[5] Mathieu J, Wang F, Segatori L, et al. Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted Chromobacterium oxidase. Biotechnology Bioeng, 2012, 109(9):2409-2415.
[6] Pollegioni L. Cholesterol oxidase:A model flavoprotein oxidase and a biotechnological tool. FEBS J, 2009, 276(23):6825-6825.
[7] Vrielink A, Ghisla S. Cholesterol oxidase:biochemistry and structural features. FEBS J, 2009, 276(23):6826-6843.
[8] Yue Q K, Kass I J, Sampson N S, et al. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry-US, 1999, 38(14):4277-4286.
[9] Vrielink A, Lloyd L F, Blow D M. Crystal-structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8-? resolution. J Mol Biol, 1991, 219(3):533-554.
[10] Lario I P, Sampson N, Vrielink A. Sub-atomic resolution crystal structure of cholesterol oxidase:What atomic resolution crystallography reveals about enzyme mechanism and the role of FAD cofactor in redox activity. J Mol Biol, 2003, 326(5):1635-1650.
[11] Coulombe R, Yue K Q, Ghisla S, et al. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J Biol Chem, 2001, 276(32):30435-30441.
[12] Kojima K, Kobayashi T, Tsugawa W, et al. Mutational analysis of the oxygen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity. J Mol Catal B-Enzym, 2013, 88(88):41-46.
[13] Moradpour Z, Ghasemianl A. Protein engineering of microbial cholesterol oxidases:a molecular approach toward development of new enzymes with new properties. Appl Microbiol Biotechnol, 2016, 100(10):4323-4336.
[14] 季文明, 陈毅力, 张和春. 比色法测定胆固醇氧化酶酶活. 无锡轻工大学学报, 2000, 5(19):251-254. Ji W M, Chen Y L, Zhang H C, et al. Assay of cholesterol oxidase activity by colorimetry. Journal of Wuxi University of Light Industry, 2000, 5(19):251-254.
[15] Hoffmann F, van den Heuvel J, Zidek N, et al. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb Tech, 2004, 34(3-4):235-241.
[16] Carrio M M, Villaverde A. Constrution and deconstrution of bacterial inclusion bodies. J Biotechnol, 2002, 96(1):3-12.
[17] Volonte F, Pollegioni L, Molla G, et al. Production of recombinant cholesterol oxidase containing covalently bound FAD in Escherichia coli. BMC Biotechnol, 2010, 10(1):1-10.
[18] Lim L, Molla G, Guinn N, et al. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Biochem J, 2006, 400(1):13-22.
[19] Motteran L, Pilone M S, Molla G, et al. Cholesterol oxidase from Brevibacterium sterolicum -The relationship between covalent flavinylation and redox properties. J Biol Chem, 2001, 276(21):18024- 1803.
[1] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[2] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[3] 吴懿, 张丽影, 权春善, 钟美玲, 王路路, 王冠天. 解淀粉芽孢杆菌Q-426群体感应系统ComX信息素前体肽的合成研究[J]. 中国生物工程杂志, 2017, 37(5): 38-44.
[4] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.
[5] 刘一杰, 薛永常. 植物黄酮类化合物的研究进展[J]. 中国生物工程杂志, 2016, 36(9): 81-86.
[6] 张璟, 张玉富, 秦慧民, 毛淑红, 路福平. 一株高效氧化胆固醇的简单节杆菌构建与转化条件优化[J]. 中国生物工程杂志, 2016, 36(11): 70-75.
[7] 王凯, 张威, 李师翁. 植酸酶及其应用[J]. 中国生物工程杂志, 2015, 35(9): 85-93.
[8] 冯翠, 王祺, 张纯, 秦培勇, 郑秀玉, 王健, 刘永东, 苏志国. PEG定点修饰重组人睫状神经营养因子及其生物活性评价[J]. 中国生物工程杂志, 2015, 35(5): 15-21.
[9] 童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 85-91.
[10] 李从镇, 毛宁. 大孔吸附树脂分离纯化培养基残基中虫草素[J]. 中国生物工程杂志, 2014, 34(1): 90-94.
[11] 林衡, 李军明, 葛高顺, 张立超, 孙利慧, 胡学军. 聚乙二醇对ELP[I]40相变温度的影响[J]. 中国生物工程杂志, 2013, 33(5): 81-85.
[12] 冯翠, 赵大伟, 张纯, 王健, 秦培勇, 刘永东, 苏志国. 一种重组人睫状神经营养因子突变体的分离纯化及结构鉴定[J]. 中国生物工程杂志, 2013, 33(10): 21-27.
[13] 张正玉, 吴绵斌. 抗生素分离纯化技术研究进展[J]. 中国生物工程杂志, 2012, 32(6): 98-103.
[14] 高炳淼, 李宝珠, 吴勇, 林波, 朱晓鹏, 长孙东亭, 罗素兰. 重组芋螺毒素GeXIVAWT的表达、纯化和鉴定[J]. 中国生物工程杂志, 2012, 32(09): 34-40.
[15] 吴秀秀, 吕晓慧, 胡亚冬, 谢春芳, 刘大岭, 姚冬生. 耐高温耐酸稳定假密环菌(Armillariella tabescens) MAN47β-甘露聚糖酶体外分子定向进化[J]. 中国生物工程杂志, 2012, 32(03): 83-90.