Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 116-125    DOI: 10.13523/j.cb.20150817
综述     
溶菌酶及其分子改造研究进展
温赛, 刘怀然, 续丹丹
北京工商大学食品学院 食品添加剂与配料北京高校工程研究中心 食品风味化学北京市重点实验室 北京 100048
Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity
WEN Sai, LIU Huai-ran, XU Dan-dan
School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Food Flavor Chemistry, Beijing 100048, China
 全文: PDF(869 KB)   HTML
摘要:

溶菌酶是一种优异的天然抗菌蛋白,可以成为抗生素和化学防腐剂的有效替代物,解决日益严峻的细菌耐药性问题和抗生素残留、化学防腐剂超标等食品安全问题。因此,深入研究并构建具有新型广谱杀菌能力的溶菌酶,对食品、医药、畜牧等行业的发展有着重要意义。对溶菌酶的分类、胞壁质酶活性和非酶活性杀菌性质以及蛋白质改造方法,特别是利用现代生物技术对溶菌酶进行抗菌活性增强、抗菌谱拓展的研究进行了综述和展望。

关键词: 溶菌酶N-乙酰胞壁质酶非胞壁质酶活性蛋白质改造    
Abstract:

Lysozyme, as a powerful natural antibiotic peptide, can be used as an effective alternative to antibiotics and chemical preservatives. With advances of lysozyme, the increasingly severe problems of bacterial resistance, antibiotic residues in dairy products and overdose of chemical preservative which cause food safety issues may be addressed. The research status of lysozyme in terms of muramidase and non-muramidase activity were summarized, and an overview of the research progress in the development of new antimicrobial activity of lysozyme by protein engineering were provided.

Key words: Lysozyme    N-acetylmuramidase    Non-muramidase activity    Protein engineering
收稿日期: 2015-04-27 出版日期: 2015-08-25
ZTFLH:  Q814  
基金资助:

国家自然科学基金青年科学基金资助项目(21406005)

通讯作者: 温赛     E-mail: wensai@btbu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

温赛, 刘怀然, 续丹丹. 溶菌酶及其分子改造研究进展[J]. 中国生物工程杂志, 2015, 35(8): 116-125.

WEN Sai, LIU Huai-ran, XU Dan-dan . Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity. China Biotechnology, 2015, 35(8): 116-125.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150817        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/116


[1] Jolles P, Jolles J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem, 1984, 63 (2): 165-189.

[2] Davis K M, Weiser J N. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infection and Immunity, 2010, 79 (2): 562-570.

[3] Rubio C A. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens, 2014, 3 (1): 73-92.

[4] Hasselberger F X. Uses of Enzymes and Immobilized Enzymes. Chicago:Nelson-Hall, 1978.

[5] 王佃亮. 重组人溶菌酶研究进展. 中国生物工程杂志, 2003, 23 (9): 59-62. Wang D L.Research progress in recombinant human lysozyme.China Biotechnology,2013,23(9):59-62.

[6] During K. Can lysozymes mediate antibacterial resistance in plants? Plant Mol Biol, 1993, 23 (1): 209-214.

[7] Jollès P. Lysozymes: Model Enzymes in Biochemistry and Biology. Birkhäuser Verlag, 1996.

[8] Baase W A, Liu L, Tronrud D E, et al. Lessons from the lysozyme of phage T4. Protein Science, 2010, 19 (4): 631-641.

[9] Shockman G D, Holtje J-V. Buereriul Cell Wall. Elsevier, 1994.

[10] Hughey V L, Johnson E A. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Applied and Environmental Microbiology, 1987, 53 (9): 2165-2170.

[11] Dias R, Vilas-Boas E, Campos F M, et al. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine. Food Microbiology, 2015, 49: 6-11.

[12] Guzzo F, Cappello M S, Azzolini M, et al. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria. International Journal of Food Microbiology, 2011, 148 (3): 184-190.

[13] Harding R L, Henshaw J, Tilling J, et al. Thioester analogues of peptidoglycan fragment MurNAc-L-Ala- -D-Glu as substrates for peptidoglycan hydrolase MurNAc-L-Ala amidase. Journal of the Chemical Society, Perkin Transactions 1, 2002, (14): 1714-1722.

[14] Cheng X, Zhang X, Pflugrath J W, et al. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91 (9): 4034-4038.

[15] Loessner M J, Maier S K, Daubek-Puza H, et al. Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. Journal of Bacteriology, 1997, 179 (9): 2845-2851.

[16] Brönneke V, Fiedler F. Production of bacteriolytic enzymes by Streptomyces globisporus regulated by exogenous bacterial cell walls. Applied and Environmental Microbiology, 1994, 60 (3): 785-791.

[17] Beukes M, Bierbaum G, Sahl H G, et al. Purification and partial characterization of a murein hydrolase, Millericin B, produced by Streptococcus milleri NMSCC 061. Applied and Environmental Microbiology, 2000, 66 (1): 23-28.

[18] Phillips D C. The three dimensional structure of an enzyme molecule. Scientific American, 1966, 215 (5): 78-90.

[19] Zlesnierowski G, Kijowski J, Lysozyme, in: Huopalahti R, López-Fandio R. Bioactive Egg Compounds. Heidelberg:Springer, 2007.33-40.

[20] Barrett J F, Schramm V L, Shockman G D. Hydrolysis of soluble, linear, un-cross-linked peptidoglycans by endogenous bacterial N-acetylmuramoylhydrolases. Journal of Bacteriology, 1984, 159 (2): 520-526.

[21] Barrett J F, Dolinger D L, Schramm V L, et al. The mechanism of soluble peptidoglycan hydrolysis by an autolytic muramidase. A processive exodisaccharidase. Journal of Biological Chemistry, 1984, 259 (19): 11818-11827.

[22] Kariyama R, Shockman G D. Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790. Journal of Bacteriology, 1992, 174 (10): 3236-3241.

[23] Ghuysen J M. Serine beta-lactamases and penicillin-binding proteins. Annual Review of Microbiology, 1991, 45 (1): 37-67.

[24] Joris B, Englebert S, Chu C P, et al. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiology Letters, 1992, 91 (3): 257-264.

[25] Shockman G D. The autolytic ('suicidase') system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiology Letters, 1992,100 (1-3): 261-267.

[26] Chu C P, Kariyama R, Daneo-Moore L, et al. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. Journal of Bacteriology, 1992, 174 (5): 1619-1625.

[27] García P, García J, García E, et al. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene, 1990, 86 (1): 81-88.

[28] Diaz E, López R, Garcia J L. Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. Journal of Biological Chemistry, 1991, 266 (9): 5464-5471.

[29] Brumfitt W, Wardlaw A C, Park J T. Development of lysozyme-resistance in Micrococcus lysodiekticus and its association with an increased o-acetyl content of the cell wall. Nature, 1958, 181 (4626): 1783-1784.

[30] Felch J W, Inagami T, Hash J H. The N, O-diacetylmuramidase of Chalaropsis species. V. The complete amino acid sequence. Journal of Biological Chemistry, 1975, 250 (10): 3713-3720.

[31] Shih J W, Hash J H. The N,O-diacetylmuramidase of Chalaropsis Species: III. amino acid composition and partial structural formula. Journal of Biological Chemistry, 1971, 246 (4): 994-1006.

[32] Lichenstein H S, Hastings A E, Langley K E, et al. Cloning and nucleotide sequence of the N-acetylmuramidase M1-encoding gene from Streptomyces globisporus. Gene, 1990, 88 (1): 81-86.

[33] Seo H J, Kitaoka M, Ohmiya K, et al. Substrate specificity of the N,6-O-diacetylmuramidase from Streptomyces globisporus. Journal of Bioscience and Bioengineering, 2003, 95 (3): 313-316.

[34] Seo H J, Shimonishi T, Ohmiya K, et al. Characterization of N-acetylmuramidase M-1 of Streptomyces globisporus produced by Escherichia coli BL21(DE3)pLysS. Journal of Bioscience and Bioengineering, 2001, 92 (5): 472-474.

[35] 曹涛, 刘同军, 王艳君. 微生物溶菌酶的研究及应用. 中国调味品, 2011, 36 (3): 23-26,32. Cao T, Liu T J, Wang Y J. Research and application of microbial lysozyme. China Condiment, 2011, 36 (3): 23-26,32.

[36] 刘同军, 徐文琳, 张玉臻. 变溶菌素Mutanolysin研究历史和发展前景. 微生物学报, Liu T J, Xu W L, Zhang Y Z. History and prospects of the research on mutanolysin. Acta Microbiologica Sinica, 2000, 40 (2): 224-227.

[37] Glynn L E. Lysozymes: Model Enzymes in Biochemistry and Biology. Basel:John Wiley & Sons, 1997.

[38] Pellegrini A, Thomas U, von Fellenberg R, et al. Bactericidal activities of lysozyme and aprotinin against gram-negative and gram-positive bacteria related to their basic character. J Appl Bacteriol, 1992, 72 (3): 180-187.

[39] Ibrahim H R, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett, 2001, 506 (1): 27-32.

[40] During K, Porsch P, Mahn A, et al. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett, 1999, 449 (2-3): 93-100.

[41] Ibrahim H R, Higashiguchi S, Juneja L. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J Agric Food Chem, 1996, (44): 1416-1423.

[42] Pellegrini A, Thomas U, Bramaz N, et al. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J Appl Microbiol, 1997, 82 (3): 372-378.

[43] Thammasirirak S, Pukcothanung Y, Preecharrama S. Antimicrobial peptides drived from goose egg white lysozyme. Comp Biochem Phy, 2010, 151: 84-91.

[44] Ibrahim H R, Higashiguchi S, Juneja L R, et al. A structural phase of heat-denatured lysozyme with novel antimicrobial action. Journal of Agricultural and Food Chemistry, 1996, 44: 1416-1423.

[45] Ibrahim H R, Higashiguchi S, Koketsu M, et al. Partially unfolded lysozyme at neutral pH agglutinates and kills gram-negative and Gram-positive bacteria through membrane damage mechanism. Journal of Agricultural and Food Chemistry, 1996, 44: 3799-3806.

[46] Hayashi K. The position of the active tryptophan residue in lysozyme. J Biochem, 1965, 58: 227-235.

[47] Kumagai I. Redesign of the substrate-binding site of hen egg white lysozyme based on the molecular evolution of C-type Iysozymes. J BioI Chem, 1992, 267: 4608-4612.

[48] Diez-Martinez R, de Paz H, Bustamante N, et al. Improving the lethal effect of Cpl-7, a Pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrobial Agents and Chemotherapy, 2013, 57 (11): 5355-5365.

[49] Hermoso J, Monterroso B, Albert A, et al. Structural basis for selective recognition of Pneumococcal cell wall by modular endolysin from phage Cp-1. Structure, 2003, 11 (10): 1239-1249.

[50] Schmelcher M, Tchang V S, Loessner M J. Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microbial Biotechnology, 2011, 4 (5): 651-662.

[51] Li C P, Salvador A S, Ibrahim H R, et al. Phosphorylation of egg white proteins by dry-heating in the presence of phosphate. Journal of Agricultural and Food Chemistry, 2003, 51: 6808-6815.

[52] Nakamura N K, Furukawa N, Matsuoka M, et al. Enzyme activity of lysozyme–dextran complex prepared by high-pressure treatment. Food Science and Technology International, 1997, 3: 235-238.

[53] Seo S, Karboune S, Yaylayan V, et al. Glycation of lysozyme with galactose, galactooligosaccharides and potato galactan through the Maillard reaction and optimization of the production of prebiotic glycoproteins. Process Biochemistry, 2012, 47 (2): 297-304.

[54] Seo S, Karboune S, L'Hocine L, et al. Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: Effect of glycation on structural and functional properties of conjugates. LWT - Food Science and Technology, 2013, 53 (1): 44-53.

[55] Enomoto H, Nagae S, Hayashi Y, et al. Improvement of functional properties of egg white protein through glycation and phosphorylation by dry-heating. Asian-Australasian Journal of Animal Sciences, 2009, 22 (4): 591-597.

[56] Hideyuki A. Bactericidal action of lysozymes attached with various sizes of hydrophobic peptides to the C-terminal using genetic modification. FEBS Letters, 1997, 415: 114-118.

[57] Ibrahim H R. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a ydrophobic pentapeptide into its C terminus. The Journal of Biological Chemistry, 1993, 269: 5059-5063.

[58] Tucker A D, Parker M W, Tsernoglou D, et al. Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. Journal of Molecular Biology, 1990, 212 (4): 561-562.

[59] Burn P, Dalle Carbonare B H, Lipid-protein interactions in biological membranes, in: Bittar E E, Neville B, ed. Principles of Medical Biology, Elsevier, 1997.39-66.

[60] Ibrahim H R, Kobayashi K, Kato A. Length of hydrocarbon chain and antimicrobial action to Gram-negative bacteria of fatty acylated lysozyme. Journal of Agricultural and Food Chemistry, 1993, 41 (7): 1164-1168

[61] Liu S T, Sugimoto T, Azakami H, et al. Lipophilization of lysozyme by short and middle chain fatty acids. Journal of Agricultural and Food Chemistry, 2000, 48: 265-269.

[62] Liu S, Azakami H, Kato A. Improvement in the yield of lipophilized lysozyme by the combination with Maillard-type glycosylation. Food / Nahrung, 2000, 44 (6): 407-410.

[63] Ibrahim H R, Yamada M, Matsushita K, et al. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. Journal of Biological Chemistry, 1994, 269 (7): 5059-5063.

[64] Ibrahim H R, Hatta H, Fujiki M, et al. Enhanced antimicrobial action of lysozyme against gram-negative and gram-positive bacteria due to modification with perillaldehyde. Journal of Agricultural and Food Chemistry, 1994, 42: 1813-1817.

[65] de Oliveira M, Brugnera D, do Nascimento J, et al. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol, 2012, 234 (5): 821-832.

[66] Valenta C, Bernkop-Schnürch A, Schwartz M. Modification of lysozyme with cinnamaldehyde: A strategy for constructing novel preservatives for dermatics. International Journal of Pharmaceutics, 1997, 148 (2): 131-137.

[67] Ibrahim H R, Aoki T, Pellegrini A. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Current Pharmaceutical Design, 2002, 8: 671-693.

[68] Nakatsuji T, Gallo R L. Antimicrobial Peptides: Old Molecules with New Ideas. Journal of Investigative Dermatology, 2011, 132 (3): 887-895.

[69] May K D, Wells J E, Maxwell C V, et al. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs. Journal of Animal Science, 2012, 90 (4): 1118-1125.

[70] Oliver W T, Wells J E. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. Journal of Animal Science, 2013, 91: 3129-3136.

[71] Abdou A M, Higashiguchi S, Aboueleinin A M, et al. Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control, 2007, 18 (2): 173-178.

[72] You S-J, Udenigwe C C, Aluko R E, et al. Multifunctional peptides from egg white lysozyme. Food Research International, 2010, 43 (3): 848-855.

[73] Memarpoor-Yazdi M, Asoodeh A, Chamani J. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 2012, 4 (1): 278-286.

[74] Ibrahim H R, Inazaki D, Abdou A, et al. Processing of lysozyme at distinct loops by pepsin: A novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochimica et Biophysica Acta (BBA) - General Subjects, 2005, 1726 (1): 102-114.

[1] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[2] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.
[3] 黄鹏, 李文姝, 谢君, 鲍建瑛, 曹晓娥, 余龙, 徐一新. 人源类溶菌酶蛋白6在毕赤酵母中的重组表达及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 30-37.
[4] 卫田田, 于颖, 金晓锋, 陶建军, 余龙. LYC5溶菌酶基因在毕赤酵母中的重组表达[J]. 中国生物工程杂志, 2014, 34(4): 1-8.
[5] 朱丽, 王学斌, 石昊, 俞慧清, 陆平, 徐旭俊, 成国祥. 转溶菌酶基因山羊乳腺上皮细胞的原代培养及特性分析[J]. 中国生物工程杂志, 2014, 34(10): 28-34.
[6] 李新新, 陶建军, 余龙. 人源溶菌酶基因LYZL4在毕赤酵母中的重组表达及活性测定[J]. 中国生物工程杂志, 2014, 34(1): 79-85.
[7] 张鹏, 江明锋, 王永. 动物源溶菌酶研究进展[J]. 中国生物工程杂志, 2012, 32(08): 87-93.
[8] 吴家鑫, 余志强, 王华丽, 葛辛玫, 齐鹏, 郑应华, 刘德虎, 宋敏, 张国栋, 曹芹. 毕赤酵母发酵生产T4溶菌酶的中试研究[J]. 中国生物工程杂志, 2010, 30(12): 49-52.
[9] 赵洪亮, 刘志敏. 蛋白质糖基化工程[J]. 中国生物工程杂志, 2003, 23(9): 18-20.
[10] 王佃亮. 重组人溶菌酶研究进展[J]. 中国生物工程杂志, 2003, 23(9): 59-63.
[11] 戈苏国. 细菌大质粒的快速分离[J]. 中国生物工程杂志, 1990, 10(5): 47-48.
[12] 张震元. 以鸡信号肽由酵母菌分泌产生人溶菌酶[J]. 中国生物工程杂志, 1987, 7(1): 64-64.
[13] 谷丽雅, 肖啸. 质粒提取[J]. 中国生物工程杂志, 1983, 3(2): 39-43.
[14] 静慧. 生物固氮与固氮菌质粒以及大质粒的分离(续)[J]. 中国生物工程杂志, 1983, 3(1): 7-13.