Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (3): 42-48    DOI: 10.13523/j.cb.20150306
研究报告     
溶解氧对γ-聚谷氨酸合成的影响
李小鑫1, 高明昊1, 张苗苗1, 刘晓晨1, 乔长晟1,2
1. 天津科技大学工业发酵微生物教育部重点实验室 天津 300457;
2. 天津北洋百川生物技术有限公司 天津 300457
Effect of Dissolved Oxygen on γ-PGA Fermentation
LI Xiao-xin1, GAO Ming-hao1, ZHANG Miao-miao1, LIU Xiao-chen1, QIAO Chang-sheng1,2
1. Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China;
2. Tianjin Peiyang Biotrans Company Limited, Tianjin 300457, China
 全文: PDF(737 KB)   HTML
摘要:

在5L发酵罐上研究了溶解氧(DO)对地衣芽孢杆菌分批发酵生产γ-聚谷氨酸(γ-PGA)的影响并考察在8h、32h、56h时,葡萄糖激酶、6-磷酸葡萄糖脱氢酶、丙酮酸脱氢酶、异柠檬酸脱氢酶和谷氨酸脱氢酶的活性及对应时间点上γ-PGA的生产速率.通过溶解氧电极和搅拌转速的串联控制发酵过程中溶解氧水平,发现高溶解氧(60%)水平和低溶解氧(10%)水平均不能高效积累γ-PGA.6-磷酸葡萄糖脱氢酶活性的提高对产物的积累有抑制作用,葡萄糖激酶和谷氨酸脱氢酶的酶活提高对产物积累有促进作用,过高的丙酮酸脱氢酶和异柠檬酸脱氢酶的活性在一定程度上可以促进菌体生长但不利于产物的积累.此外,通过对三种不同DO水平下γ-PGA生物合成途径中相关代谢流量的计算表明,在pH 6.5的条件下,对于谷氨酸依赖型生产菌株,提高外源谷氨酸利用率可以促进γ-PGA的生物合成.

关键词: &gamma-聚谷氨酸溶解氧代谢通量关键酶活性    
Abstract:

Effects of different dissolved oxygen (DO) on the production rate of γ-PGA, at the 8, 32 and 56 hours were studied, using the 5L fermentor to synthesis γ-PGA with Bacillus licheniformis. Results indicated that neither high nor low DO value could efficiently accumulate γ-PGA based on the analysis of relevant data. The research also concerned about five kinds of enzyme activity which were key enzymes of metabolic flux of biosynthesis for γ-PGA. The enzymes includes hexokinase, glucose-6-phosphate dehydrogenase(G-6-Dp), pyruvate dehydrogenase(PDH), isocitrate dehydrogenase(ICDH)and glutamate dehydrogenase(GDH). And G-6-D Pcould depress the synthesis of γ-PGA. High activity of Hexokinase and GDH would promote the production of γ-PGA. PDH and ICDH might advance the production rate of cell. The higher activity of PDH and ICDH might be not conductive to the fermentation. Moreover, the extracellular metabolites profiles of fermentation under three different DO values were acquired and the metabolic flux redistribution of pathways related to γ-PGA biosynthesis was calculated based on the collected data. As a result, the metabolic flux favored to distribute toward glycolytic pathway at DO 30%, in which the ingestion rate of extracellular glutamic acid was higher and the subsequent γ-PGA biosynthesis was enhanced.

Key words: γ-PGA    Dissolved oxygen    Metabolic flux    Key enzyme activity
收稿日期: 2014-10-08 出版日期: 2015-03-25
ZTFLH:  Q-33  
通讯作者: 乔长晟     E-mail: qiaochangsheng@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李小鑫, 高明昊, 张苗苗, 刘晓晨, 乔长晟. 溶解氧对γ-聚谷氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 42-48.

LI Xiao-xin, GAO Ming-hao, ZHANG Miao-miao, LIU Xiao-chen, QIAO Chang-sheng. Effect of Dissolved Oxygen on γ-PGA Fermentation. China Biotechnology, 2015, 35(3): 42-48.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150306        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I3/42


[1] Hara T, Ueda S.Regulation of polyglutamate production in Bacillus subtilis (natto): transformation of high PGA productivity.Agricultural and Biological Chemistry,1982,46(9):2275-2281.

[2] Kubota H, Matsunobu T, Uotani K, et al.Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01.Bioscience, Biotechnology, and Biochemistry,1993,57(7):1212-1213.

[3] Thorne C B, Gómez C G, Noyes H E, et al.Production of glutamyl polypeptide by Bacillus subtilis.Journal of Bacteriology,1954,68(3):307.

[4] Troy F A.Chemistry and biosynthesis of the poly (γ-d-glutamyl) capsule in Bacillus licheniformis I. properties of the membrane-mediated biosynthetic reaction.Journal of Biological Chemistry,1979,254(14):6262-6269.

[5] Hamano Y. AminoAcid Homopolymers Occuring in Nature//Microbiology Monographs:Vol15. Berlin:Springer, 2010:1923,3334.

[6] Ashiuchi M, Kamei T, Misono H.Poly-γ-glutamate synthetase of Bacillus subtilis.Journal of Molecular Catalysis B: Enzymatic,2003,23(2):101-106.

[7] Dauner M, Bailey J E, Sauer U.Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.Biotechnology and Bioengineering,2001,76(2):144-156.

[8] Zhu F, Cai J, Wu X, et al.The main byproducts and metabolic flux profiling of γ-PGA-producing strain B. subtilis ZJU-7 under different pH values. J Biotechnol,2013,164(1):67-74.

[9] Shimizu H, Tanaka H, Nakato A, et al.Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum.Bioprocess and Biosystems Engineering,2003,25(5):291-298.

[10] Hasegawa T, Hashimoto K I, Kawasaki H, et al.Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum.Journal of Bioscience and Bioengineering,2008,105(1):12-19.

[1] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[2] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[3] 吉美萍, 庞艳波, 付丽丽, 那日, 郭九峰, 王志永. γ-聚谷氨酸基因工程研究进展与展望[J]. 中国生物工程杂志, 2016, 36(6): 107-118.
[4] 刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.
[5] 袁佩佩, 曹伟佳, 王震, 张博文, 陈可泉, 李艳, 欧阳平凯. 大肠杆菌产L-苯丙氨酸发酵调控及代谢通量分析[J]. 中国生物工程杂志, 2015, 35(3): 25-34.
[6] 陈香粉, 鲁洪中, 唐文俊, 唐寅, 储炬, 庄英萍, 张嗣良. 基于比速率及代谢流的黑曲霉突变株和野生株分析[J]. 中国生物工程杂志, 2014, 34(8): 35-40.
[7] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[8] 张文, 张树清, 马晓彤, 何翠翠. 纳豆芽孢杆菌(Bacillus natto)发酵生产γ-聚谷氨酸过程中培养基组分的优化[J]. 中国生物工程杂志, 2013, 33(11): 44-50.
[9] 李晓静, 段云霞. 代谢工程在核黄素生产上的应用[J]. 中国生物工程杂志, 2011, 31(02): 130-138.
[10] 黎志勇 纪晓俊 丛蕾蕾 聂志奎 彭超 高振 黄和. 发酵法生产γ-亚麻酸的研究进展[J]. 中国生物工程杂志, 2010, 30(09): 110-117.
[11] 徐红运 夏平安 张凤华 赵琳 范旭 刘明莉 刘玉松 张志远 崔保安. 猪FcγRIII的原核表达及多克隆抗体的制备[J]. 中国生物工程杂志, 2010, 30(06): 117-121.
[12] 夏立亮 侯巍 王保学 刘华 高伟 蒋琴 李鑫 于源华. 阴道毛滴虫蛋氨酸裂解酶的基因克隆及重组酶性质分析[J]. 中国生物工程杂志, 2010, 30(05): 6-10.
[13] 王建,王泽建,黄明志,钱江潮,储炬,张嗣良. 13CMFA过程中GC-MS分析菌体蛋白氨基酸的13C标记丰度[J]. 中国生物工程杂志, 2009, 29(07): 87-93.
[14] 曹小红,闫乐,王春玲,焦润芝,鲁梅芳. γ-聚谷氨酸与D-半乳糖酯化衍生物-顺铂复合物的制备及其生物活性[J]. 中国生物工程杂志, 2009, 29(03): 41-46.
[15] 方刚,张社民. RecA蛋白介导的三链核酸结构形成及其序列提取[J]. 中国生物工程杂志, 2009, 29(02): 71-75.