Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (11): 124-131    
综述     
基因工程技术改造木糖醇生产菌株的研究进展
焦静雨1,2, 吴绵斌1,2,3, 赵炯烽1,2, 林建平1,2, 杨立荣1,2
1. 浙江大学 生物质化工教育部重点实验室 杭州 310027;
2. 浙江大学化学工程与生物工程学系 杭州 310027;
3. 浙江省抗真菌药物研究重点实验室 台州 318000
Research Advances in Improvement of Xylitol Producing Strains by Genetic Engineering Technology
JIAO Jing-yu1,2, WU Mian-bin1,2,3, ZHAO Jiong-feng1,2, LIN Jian-ping1,2, YANG Li-rong1,2
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China;
2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
3. Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang, Taizhou 318000, China
 全文: PDF(547 KB)   HTML
摘要: 木糖醇是一种低热量的五碳糖醇,广泛应用于医药、食品和化工等领域。生物合成法相对于化学合成法具有工艺条件温和、能耗低、环境污染小等特点,已成为研究的热点。但由于野生微生物体内具有不同的木糖代谢途径,且木糖还原酶的专一性不强以及转化过程需要辅酶参与等原因,影响了该技术的产业化应用。对生物转化法生产木糖醇的现状及存在的问题进行了分析,展望了采用基因工程技术改造微生物的代谢途径,提高生物催化转化木糖醇的产率的新技术和方法。
关键词: 木糖醇微生物基因工程生物转化    
Abstract: Xylitol as a five carbon sugar alcohol and low caloric content, has been widely used in medicine, food and chemical fields. Compared with chemical synthesis method, biological synthesis method has become a research focus because of its mild operation conditions, low energy consumption, and little environmental pollution. However, there also exist the leading obstacles to the commercial production of xylitol by bioconversion, such as the different xylose metabolic pathways existed in natural microorganisms, nonspecific nature of xylose reductase(XR), and requiring nicotinamide cofactors (NADH and NADPH) in biosynthesis of xylitol. Based on reviewing and analyzing the current understanding on biocatalytic routes to xylitol production, novel genetic engineering strategies through improving metabolic pathways of microorganisms which can improve the biological catalytic conversion of xylitol yield were emphasised.
Key words: Xylitol    Microorganism    Genetic engineering    Biotransformation
收稿日期: 2012-09-10 出版日期: 2012-11-25
ZTFLH:  Q819  
基金资助: 国家"产学研联盟"科技重大专项资助项目(2010ZX090401-403)
通讯作者: 吴绵斌,电子信箱:wumb@zju.edu.cn;林建平,电子信箱:linjp@zju.edu.cn     E-mail: wumb@zju.edu.cn;linjp@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
焦静雨
吴绵斌
赵炯烽
林建平
杨立荣

引用本文:

焦静雨, 吴绵斌, 赵炯烽, 林建平, 杨立荣. 基因工程技术改造木糖醇生产菌株的研究进展[J]. 中国生物工程杂志, 2012, 32(11): 124-131.

JIAO Jing-yu, WU Mian-bin, ZHAO Jiong-feng, LIN Jian-ping, YANG Li-rong. Research Advances in Improvement of Xylitol Producing Strains by Genetic Engineering Technology. China Biotechnology, 2012, 32(11): 124-131.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I11/124

[1] Mancilha I D, Karim M N. Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog, 2003, 19(6): 1837-1841.
[2] 黄炜.玉米芯半纤维素水解液发酵生产木糖醇的研究.杭州:浙江大学,化学工程与生物工程,2004. Huang W. The Research of Cob Hemicellulose Hydrolysate Fermentation Production Xylitol. HangZhou: Zhejiang University, Department of Chemical and Bilolgical Engineering, 2004.
[3] Carvalho W, Santos J C, Canilha L, et al. Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J, 2005, 25(1): 25-31.
[4] Canilha L, Silva J D A, Solenzal A. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchanger resins for xylitol production. Process Biochem, 2004, 39(12): 1909-1912.
[5] Liaw W C, Chen C S, Chang W S, et al. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immlbilized candida subtropicalis WF79. Biosci Bioeng, 2008, 105(2): 97-105.
[6] 张松青,游鹏程,郑笈,等.木糖醇在医药领域的应用.中国医院药学杂志,2007,27(11):1582-1584. Zhang S Q, You PC, Zheng D, et al. The application of xylitol in the field of medicine. China Hospital Pharm J, 2007, 27(11): 1582-1584.
[7] 任鸿均.木糖醇的生产新技术及其应用.化工科技市场,2005,28(2):1-6. Ren H J. The production new technology and application of the xylitol. Chemical Technology Market, 2005, 28(2): 1-6.
[8] 刘敏,王伟健,王文辉,等.咀嚼木糖醇口香糖对牙面菌斑原位pH值的影响.现代口腔医学杂志,2006,20(5):476-478. Liu M, Wang W J, Wang W H, et al. Effect of xylitol chewing gum on dental plaque pH in vivo. J Modern Somatol, 2006, 20(5): 476-478.
[9] 李齐宏,文军,薛洋.木糖醇牙膏对菌斑抑制效果的临床试验.牙体牙髓牙周病学杂志,2005,16(5):331-333. Li Q H, Wen J, Xue Y. Clinical study on the effect of the dentifrice with xylitol in the control of plaque. Chin J Conserv Dent, 2005, 16(5): 331-333.
[10] Akinterinwa O, Khankal R, Cirino P. Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol, 2008, 19(5): 461-467.
[11] Ferreira A S, Souza M D, Barbosa N R, et al. Leishmania amazonensis: xylitol as inhibitor of macrophage infection and stimulator of macrophage nitric oxide production. Experimental Parasitology,2008, 119(1): 74-79.
[12] Weissman J D, Fernandez F, Peter H. Xylitol nasal irrigation in the management of chronic rhinosinusitis: a pilot study.Laryngoscope, 2011, 121(11): 2468-2472.
[13] 黄静.木糖醇的合成、应用及市场前景.化工技术与开发,2003,32(5):12-15. Huang J. Synthesis, application and market prospect of xylitol. Technology & Development of Chemical Industry, 2003, 32(5): 12-15.
[14] Granstrom T B, Izumori K, Leisola M. A rare sugar xylitol.PartI: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biltechnol, 2007, 74(2): 277-281.
[15] Hudlicky T, Reed J W. Application of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem Soc Rev, 2009, 38(11): 3117-3132.
[16] 邓立红,王艳辉,张扬,等.热带假丝酵母发酵生产木糖醇的研究.食品与发酵工业,2004,30(9):37-40. Deng L H, Wang Y H, Zhang Y, et al. Studies on xylitol fermentation by candida tropicalis. Food and Fermentation Industries, 2004, 30(9): 37-40.
[17] 张晓元,王松梅,朱希强,等.热带假丝酵母发酵法生产木糖醇的研究.食品与药品,2006,8 (11):27-31. Zhang X Y, Wang S M, Zhu X Q, et al. Study on fermentation condition of xylitol production by Candida tropicalis. Food and Drug, 2006, 8(11): 27-31.
[18] Zhang J M, Geng A L, Yao C Y, et al. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource Technology, 2012, 105(1): 134-141.
[19] Bae S M, Park Y C, Lee T H, et al. Production of xylitol by recombinant Saccharomy cescerevisiae containing xylose reductase gene in repeated fed-batch and cell recycle fermentations. Enzym.Microb.Tech, 2004, 35(6-7): 545-549.
[20] Kim T B, Lee Y J, Kim P, et al. Increased xylitol production rate during long term cell recycle fermentation of Candida tropicalis. Biotechnol, 2004, 26(8): 623-627.
[21] Silva S S, Santos J C, Carvalho W, et al. Use of a fluidized bed reactor operated in semi-continuous mode for xylose to xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem, 2003, 38(6):903-907.
[22] 蒋西然,李文利.纤维素乙醇基因工程研究进展.中国生物工程杂志,2009,29(7):127-133. Jiang X R, Li W L. Research progress in genetic engineering for cellulosic ethanol. China Biotechnology, 2009, 29(7): 127-133.
[23] 黎娅,孙晓菲,曹毅,等.酵母菌木糖醇发酵菌株的筛选.四川大学学报,2005,42(2):427-430. Li Y, Sun X F, Liu S Z, et al. Screening yeast strain for xylitol production. Journal of Sichuan University(Natural Science Edition), 2005, 42(2): 427-430.
[24] 丁兴红,夏黎明.影响半纤维素发酵液中分离纯化木糖醇关键因子的研究.中国食品学报,2006,6(6):87-91. Ding X H, Xia L M. Effects of several key factors on xylitol separation and purification in fermented hemicellulose hydrolyzates. Journal of Chinese Institute of Food Science and Technology, 2006, 6(6): 87-91.
[25] 陈高云,叶凯,涂振东,等.木糖醇脱氢酶研究进展.酿酒科技,2011,5:90-93. Chen G Y, Ye K, Tu Z D, et al. Research progress in xylitol dehydrogenase. Liquar-Making Science&Technology, 2011, 5: 90-93.
[26] Chao Y, Cao Y J, Zou H B, et al. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biltechnol, 2011, 89(3): 573-583.
[27] 李民,陈常庆.重组大肠杆菌高密度发酵研究进展.中国生物工程杂志,2000,20(2):26-31. Li M, Chen C Q. Progress studies of high cell-density culture of recombinant Escherichia coli. China Biotechnology, 2000, 20(2): 26-31.
[28] Suzuki T, Yokoyama S I, Kinoshita Y, et al. Expression of xyrA gene encoding for D-Xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. Bioscience and Bioengineering, 1999, 87(3): 280-284.
[29] 张晓梅.遗传改造Zymomonas mobilis代谢木糖及其木糖醇产生机制的研究.济南:山东大学,微生物学,2009. Zhang X M. Metabolic engineering of Zymomonas mobilis for xylose utilization and mechanism of catalyzed formation of xylitol. Jinan: Shandong University, Microbiology, 2009.
[30] 吴春霞,阚建全.酵母菌转化木糖生产木糖醇的研究进展.中国食品添加剂,2007,3:110-113. Wu C X, Han J Q. Research progress on xylitol production fermentated by microbiology from hemicellulosic hydrolysate. Food and Additives, 2007, 3: 110-113.
[31] Nikhil U N, Zhao H M. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Engineering, 2010, 12(5): 462-468.
[32] Nichols N N, Dien B S, Bothast R J. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol, 2001, 56(1-2): 120-125.
[33] Boris G, Jorg S, Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 6: 613-624.
[34] Khankal R, Chin J W, Cirino PC. Role of xylose transporters in xylitol production from engineered Escherichia coli. Biotechnology, 2008, 134(3-4): 246-252.
[35] Khankal R, Luziatelli F, Chin J W, et al. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E.coliB as platforms for xylitol production. Biotechnol, 2008, 30(9):1645-1653.
[36] Nair N U, Zhao H M. Evolution in Reverse: Engineering a D-xylose-specific xylose reductase. ChemBioChem, 2008, 9(8): 1213-1215.
[37] Woodyer R, Simurdiak M, Zhao H M. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol, 2005, 71(3):1642-1647.
[38] Zhao H M, Nair N, Racine M, et al. Production of xylitol from a mixture of hemicellulosic sugars: US, 08302A1 . 2011-07-21.
[39] Sakakibara Y, Saha B C, Taylor P. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. Bioscience and Bioengineering, 2009, 107(5): 506-511.
[40] Chin J W, Khankal R, Monroe C A, et al. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnology and Bioengineering, 2009, 102(1): 209-220.
[41] Cirino PC, Chin J W, Ingram L O. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnology and Bioengineering, 2006, 95(6): 1167-1176.
[42] Chin J W, Cirino PC. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Buitechnol Prog, 2011, 27(2): 333-341.
[43] Ahmad I, Shim W Y, Jeon W Y, et al. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst, 2012, 35(1-2): 199-204.
[44] Nidetzky B, Helmer H, Klimacek M, et al. Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chemico-Biological Interactions, 2003, 143(44): 533-542.
[45] Kim Y W, Choi J H, Kim J W, et al. Directed evolution of thermus maltogenic amylase toward enhanced thermal resistance. Appl Envieon Microbiol, 2003, 69(8): 4866-4874.
[46] Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst, 2012, 35(1-2): 191-198.
[47] Akinterinwa O, Cirino PC. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metabolic Engineering, 2009, 11(1): 48-55.
[48] Luccio E D, Petschacher B, Voegtli J, et al. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. Mol Biol, 2007, 365(3): 783-798.
[49] Causey T B, Zhou S, Shanmugam K T, et al. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proc Natl Acad Sci USA, 2003, 100(3): 825-832.
[50] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 2000, 97(12): 6640-6645.
[51] Martinez-Morales F, Borges A C, Martinez A, et al. Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J Bacteriol, 1999, 181(22): 7143-7148.
[52] 闫继爱,张雪,陈宁,等.利用Red同源重组技术构建产L-苏氨酸的基因工程菌.中国生物工程杂志,2010,30(3):79-84. Yan J A, Zhang X, Chen N, ea al. Construction of genetic engineering strains for L-threonine production by Red recombination. China Biotechnology, 2010, 30(3): 79-84.
[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.
[3] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[4] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[5] 吕雪芹, 金柯, 刘家恒, 崔世修, 李江华, 堵国成, 刘龙. 工业模式微生物膜有序性的活细胞定量分析 *[J]. 中国生物工程杂志, 2021, 41(1): 20-29.
[6] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[7] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[8] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[9] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[10] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[11] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[12] 蒋甜,张超,刘会洲. 微生物燃料电池发展态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 189-197.
[13] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.