Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (1-2): 189-197    DOI: 10.13523/j.cb.1906010
行业分析     
微生物燃料电池发展态势分析
蒋甜(),张超,刘会洲
中国科学院文献情报中心 北京 100190
Development Trends Analysis of Microbial Fuel Cell
JIANG Tian(),ZHANG Chao,LIU Hui-zhou
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1607 KB)   HTML
摘要:

随着世界经济的高速发展和人口的不断增长,能源短缺和环境污染问题日益成为制约发展的瓶颈。微生物燃料电池(microbial fuel cell,MFC)能将污染物中蕴含的化学能直接转化为电能,实现同步污水处理和电能回收,是一种极具前景的可持续污水处理技术。同时,MFC在污泥处理、生物修复、环境监测、海水淡化等方面也展示了诱人的前景。基于科睿唯安Web of Science数据库和德温特专利检索分析平台(Derwent Innovation, DI),对MFC领域1990~2018年的论文和专利数据进行统计分析,得出全球MFC领域的发展趋势、国际分布、研发热点和技术格局。在此基础上,对未来MFC领域的发展做出了展望,对中国MFC产业化发展提出了思考和建议。

关键词: 微生物燃料电池MFC论文分析专利分析    
Abstract:

With the rapid development of the world economy and the continuous growth of the population, energy shortage and environmental pollution has increasingly become the bottleneck of development. Microbial Fuel Cell (MFC) is a highly promising technology for sustainable wastewater treatment, which can directly convert the chemical energy stored in the pollutants into electric energy. In addition, the MFC technology also shows attractive prospects in sludge disposal, bioremediation, environmental monitoring, desalination and other aspects. Based on the Web of Science and Derwent Innovation database, the paper and patent data from 1990-2018 in the field of MFC was analyzed and the development trends, international distribution, research hotspots and technology fields were obtained. On this basis, the future development of MFC field was prospected, and the development of China’s MFC industrialization was proposed.

Key words: Microbial fuel cell    MFC    Paper analysis    Patent analysis
收稿日期: 2019-06-06 出版日期: 2020-03-27
ZTFLH:  Q819  
通讯作者: 蒋甜     E-mail: jiangtian@mail.las.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋甜
张超
刘会洲

引用本文:

蒋甜,张超,刘会洲. 微生物燃料电池发展态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 189-197.

JIANG Tian,ZHANG Chao,LIU Hui-zhou. Development Trends Analysis of Microbial Fuel Cell. China Biotechnology, 2020, 40(1-2): 189-197.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1906010        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I1-2/189

图1  1990~2018年MFC领域发文量年度变化趋势
图2  1990~2018年MFC领域专利申请量年度变化趋势
图3  发文量排名前20国家的论文数目及篇均被引频次
序号 国家 专利数目 总被引
频次
被引频次
大于10的
专利数目
被引频次大于
10的专利累
计被引频次
1 中国 1 352 3 147 82 1 290
2 日本 419 2 068 57 1 376
3 美国 380 8 711 158 8 104
4 韩国 178 564 8 378
表1  排名前4位的国家的专利数量及被引频次
图4  MFC发文量前10研究机构(a)及专利申请量前10专利权人(b)
图5  MFC领域专利权人组成结构
序号 IPC 涉及技术领域 专利数量 主要技术来源国家
1 H01M 直接转变化学能为电能的方法或装置 2 162 中国、日本、美国
2 C02F 水、废水、污水或污泥的处理 737 中国、日本、韩国
3 C12N 微生物或酶;其组合物 227 日本、中国、美国
4 G01N 借助于材料的理化性质测试或分析材料 178 日本、中国、美国
5 C12M 酶学或微生物学装置 105 日本、美国、中国
6 C12Q 包含酶或微生物的测定或检验方法 87 日本、美国、韩国
7 C12R 涉及微生物 76 中国、日本、美国
8 C12P 发酵或使用酶的方法合成目标化合物 72 美国、中国、日本
9 C25B 生产化合物或非金属的电解工艺或电泳工艺;其所用的设备 72 中国、美国、日本
10 B01J 化学或物理方法,如催化作用 60 中国、日本、美国
表2  MFC重点技术领域分布及主要技术来源国家
图6  MFC主要技术来源国的技术构成分析
图7  MFC专利地图
序号 主题内容 主题强度
1 MFC污水处理同步发电 0.088 300 94
2 MFC性能参数及评价指标 0.055 434 09
3 胞外电子传递机制 0.039 419 18
4 MFC生物质能利用 0.037 892 68
5 MFC电解产氢 0.035 797 99
6 MFC电解产甲烷 0.035 279 24
7 MFC结构健康监测 0.034 857 11
8 MFC底物 0.034 700 82
9 MFC还原重金属 0.033 189 93
10 污泥厌氧消化 0.033 006 46
11 沉积物MFC 0.032 229 56
12 阳极生物膜 0.031 433 28
13 MFC脱盐、海水淡化 0.031 208 62
14 脱氮微生物群落结构 0.031 081 72
15 纯菌型MFC/混菌型MFC 0.030 726 48
16 MFC制备 0.030 687 91
17 光合MFC 0.030 620 78
18 石油污染土壤的生物修复 0.029 987 36
19 酶生物燃料电池 0.029 969 62
20 生物传感器 0.029 848 93
21 产电基因工程菌 0.029 818 23
22 产电微生物种群生长数学建模 0.028 980 11
23 分隔膜 0.028 850 97
24 生态修复 0.028 538 58
表3  MFC论文LDA主题识别结果(K=30)
[1] 张吉强, 郑平, 李甲亮 , 等. 微生物燃料电池同步脱氮产电研究. 徐州: 中国矿业大学出版社, 2016: 1-3.
Zhang J Q, Zheng P, Li J L , et al. Study on synchronous denitrification and electrogeneration of microbial fuel cells. Xuzhou: China University of Mining and Technology Press, 2016: 1-3.
[2] Potter M C . Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B-Biological Sciences, 1911,84(571):260-276.
[3] 连静, 冯雅丽, 李浩然 , 等. 微生物燃料电池的研究进展. 过程工程学报, 2006,6(2):334-338.
Lian J, Feng Y L, Li H R , et al. Advances in microbial fuel cells. The Chinese Journal of Process Engineering, 2006,6(2):334-338.
[4] Bond D R, Holmes D E, Tender L M , et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002,295(5554):483-485.
[5] Reguera G, Nevin K P, Nicoll J S , et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 2006,72(11):7345-7348.
[6] Kim B H, Kim H J, Hyun M S , et al. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 1999,9(2):127-131.
[7] Kim H J, Park H S, Hyun M S , et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 2002,30(2):145-152.
[8] Park H S, Kim B H, Kim H S , et al. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 2001,7(6):297-306.
[9] Rabaey K, Boon N, Siciliano S D , et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 2004,70(9):5373-5382.
[10] Reguera G, McCarthy K D, Mehta T , et al. Extracellular electron transfer via microbial nanowires. Nature, 2005,435(7045):1098-1101.
[11] Li C, Lesnik K L, Liu H . Stay connected: electrical conductivity of microbial aggregates. Biotechnology Advances, 2017,35(6):669-680.
[12] Logan B E, Rossi R, Ragab A , et al. Electroactive microoganisms in bioelectrochemical systems. Nature Reviews Microbiology, 2019,17(5):307-319.
[13] Logan B E, Rabaey K . Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 2012,337(6095):686-690.
[14] Zou L, Huang Y H, Long Z E , et al. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World Journal of Microbiology & Biotechnology, 2018,35(1):9.
[15] Zhou T, Han H, Liu P , et al. Microbial fuels cell-based biosensor for toxicity detection: A Review. Sensors, 2017,17(10):E2230.
[16] Liang P, Huang X, Fan M Z , et al. Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology, 2007,77(3):551-558.
[17] Liu H R, Feng Y L, Tang X H , et al. The factors affecting biofilm formation in the mediatorless microbial fuel cell. Chemical and Biochemical Engineering Quarterly, 2010,24(3):341-346.
[18] Meng F Y, Zhao Q L, Zheng Z , et al. Simultaneous sludge degradation, desalination and bioelectricity generation in two-phase microbial desalination cells. Chemical Engineering Journal, 2018,361(12):180-188.
[19] Blei D M, Ng A Y, Jordan M I . Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3(4-5):993-1022.
[20] Dong K, Jia B Y, Yu C L , et al. Microbial fuel cell as power supply for implantable medical devices: A novel configuration design for simulating colonic environment. Biosensors &Bioelectronics, 2013,41:916-919.
[21] Gong Y, Radachowsky S E, Wolf M . Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental Science &Technology, 2011,45(11):5047-5053.
[22] 劳慧敏, 李金页, 贾玉平 . 植物微生物燃料电池技术的研究进展. 科技通报, 2016,32(3):189-193.
Lao H M, Li J Y, Jia Y P . Advances in plant microbial fuel cell technology. Bulletin of Science and Technology, 2016,32(3):189-193.
[23] Guan C Y, Hu A, Yu C P . Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Science of the Total Environment, 2019,670:585-594.
[1] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[2] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[3] 黄鹏飞,陈赟,陆娇,毛开云,袁银池. 生物医药专利密集型产业发展现状及建议*——以上海市为例[J]. 中国生物工程杂志, 2020, 40(12): 108-116.
[4] 毕晴,孙琳. CAR-T技术中外专利申请分析与比较[J]. 中国生物工程杂志, 2018, 38(4): 107-114.
[5] 夏太寿, 王园磊, 田丽丽. 基于专利分析的江苏生物医药发展现状与对策研究[J]. 中国生物工程杂志, 2016, 36(8): 123-130.
[6] 李东巧, 郭文姣, 陈芳. 基于专利分析的转基因药用植物技术发展趋势研究[J]. 中国生物工程杂志, 2016, 36(11): 98-108.
[7] 赵绘存. 基于专利信息可视化的生物反应器发展态势分析[J]. 中国生物工程杂志, 2016, 36(1): 115-121.
[8] 吴学彦, 韩雪冰, 戴磊. 基于DII的转基因大豆领域专利计量分析[J]. 中国生物工程杂志, 2013, 33(3): 143-148.