Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (06): 89-95    DOI: Q786
技术与方法     
基因AtHsp17.6-C2 启动子的克隆及其热诱导动力学研究
曾为军1,2,王水平1,李小方1,徐萍3,王瑞刚4**
1.华东师范大学生命科学学院 上海 200062
2.新疆师范大学生命科学与化学学院 乌鲁木齐 830054
3.中国科学院上海生命科学信息中心 上海 200031
4.内蒙古农业大学生命科学学院 呼和浩特 010018
Clonning the Promoter of AtHsp17.6-C2 and its Heat Inducible Kinetics
ZENG Wei-jun1,2,WANG Shui-ping1,LI Xiao-fang1,XU Ping3,WANG Rui-gang4**
1.School of Life Science, East China Normal University, Shanghai 200062, China
2.College of Life Science and Chemistry,Xinjiang Normal University,Urumqi 830054,China
3.Shanghai Information Center for Life Science,CAS, Shanghai 200031,China
4.College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, China
 全文: PDF(636 KB)   HTML
摘要:

介绍一个植物表达系统,由热激蛋白基因(AtHsp17.6C2)的启动子来驱动GUS基因的表达。在22℃生长条件下,稳定遗传的转基因植株中几乎检测不到GUS的活性。但是当温度升至34~37℃时,GUS的活性迅速升高。37℃是该植物表达系统最适诱导温度。转基因植株经37℃热诱导2小时后再返回22℃培育2小时,GUS的活性增加80多倍。多次热诱导实验表明这个表达系统是能够被重复多次热诱导的。实验结果表明这个植物诱导表达系统能够适用于多种目的需要。

关键词: 拟南芥可控基因表达热激AtHsp17.6-C2启动子GUS    
Abstract:

A gene expression system were constructed, driven by a heat-shock gene promoter (AtHsp17.6-C2), to control the expression of reporter gene (GUS) in transgenic plants. The expression of the AtHsp17.6-C2 chimeric gene in the stable transformants of ⊿F122-13 was hardly detected in culture at 22℃. However,the expression increased dramatically at the transcriptional level when the incubation temperature was shifted to 34~37℃. The optimal temperature for heat (shock) induction was 37℃. After a 2h incubation at 37℃ and 2h recovery phase at 22℃, GUS activity was about 80 fold greater than that before heat shock. Multiple heat-shock treatments showed that this system was heat reinducible. This new system can be applied in numerous and various applications.

Key words: Arabidopsis    Conditional gene expression    Heat-shock    AtHSP17.6-C2 promoter    GUS
收稿日期: 2010-01-21 出版日期: 2010-06-12
基金资助:

国家自然科学基金(30660014)、教育部留学回国人员启动基金(2006)、内蒙古自然科学基金(200508010503)资助项目。

通讯作者: 王瑞刚     E-mail: wungruigang@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾为军
王水平
李小方
徐萍
王瑞刚

引用本文:

曾为军 王水平 李小方 徐萍 王瑞刚. 基因AtHsp17.6-C2 启动子的克隆及其热诱导动力学研究[J]. 中国生物工程杂志, 2010, 30(06): 89-95.

CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. Clonning the Promoter of AtHsp17.6-C2 and its Heat Inducible Kinetics. China Biotechnology, 2010, 30(06): 89-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q786        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I06/89

[1] Moore I, Glweiler L, Grosskopf D. et al. A transcription activation system for regulated gene expression in transgenic plants. Plant Biology ,1998, 95(1): 376381. 
[2] Tang Wei, Luo Xiaoyan, Samuels V. Regulated gene expression with promoters responding to inducers. Plant Science, 2004,166(4): 827834. 
[3] Andersen S U, Cvitanich C, Hougaard B K. et al.The glucocorticoidinducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol Plant Microb Interact, 2003,16(12):10691076. 
[4] Amirsadeghi S, McDonald A E, Vanlerberghe G C. A glucocorticoidinducible gene expression system can cause growth defects in tobacco. Planta ,2007, 226(2):453463. 
[5] Vierling E. The roles of heat shock proteins in plants.Annu Rev Plant Physiol Plant Mol Biol,1991, 42:579620. 
[6] Waters E R, Lee G J, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot,1996,47(296): 325338. 
[7] Sun Weining, Bernard C, Cotte B, et al. AtHSP17.6A, encoding a small heatshock protein in Arabidopsis, can enhance osmotolerance upon overexpression. The Plant Journal,2001, 27(5): 407415. 
[8] Sun Weining, Montagu M V, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta, 2002(1),1577(1):19. 
[9] Luo Keming, Sun Min, Deng Wei,et al. Excision of selectable marker gene from transgenic tobacco using the GMgenedeletor system regulated by a heatinducible promoter. Biotechnol Lett,2008,30(7):12951302. 
[10] Liu Haikun, Yang Chao, Wei Zhiming. Heat shockregulated site specific excision of extraneous DNA in transgenic plants.Plant Sci, 2005,168(4):9971003. 
[11] Monciardini P, Podini D, Marmiroli N. Exotic gene expression in transgenic plants as tool for monitoring environmental pollution. Chemosphere, 1998, 37(1415): 27612772. 
[12] Matsuhara S, Jingu F, Takahashi T. et al. Heatshock tagging: a simple method for expression and isolation of plant genome DNA flanked by TDNA insertions. Plant Journal ,2000,22(1):7986. 
[13] Lee K T, Chen S C, Chiang B L, et al. Heatinducible production of βglucuronidase in tobacco hairy root cultures. Appl Microbiol Biotechnol,2007, 73(5):10471053. 
[14] Chen S C, Liu H W, Lee K T, et al. Highefficiency Agrobacterium rhizogenesmediated transformation of heat inducible sHSP18.2GUS in Nicotiana tabacum. Plant Cell Rep,2007, 26(1):2937. 
[15] Chung M H, Chen M K, Pan Shumei. Floral spray transformation can efficiently generate Arabidopsis transgenic plants.Transgenic Res,2000,9(6):471476. 
[16] Jefferson R A.Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep,1987, 5(4):387405. 
[17] Queitsch C, Hong S W, Vierling E. et al. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell, 2000,12(4): 479492. 
[18] Zuo Jianru, Niu Qiwen, Chua N H. An estrogen receptorbased transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal,2000,24(2):265273. 
[19] Tawa V S, Dinkins R D, Palli S R, et al. Development of a methoxyfenozideresponsive gene switch for applications in plants. The Plant Journal,2006, 45(3):457469. 
[20] Padidam M, Gore M, Lily D, et al. Chemicalinducible, ecdysone receptorbased gene expression system for plants. Transgenic Research ,2003,12(1): 101109. 
[21] Roslan H A, Salter M G, Wood C D, et al. Characterization of the ethanolinducible alc geneexpression system in Arabidopsis thaliana. The Plant Journal ,2001, 28(2): 225235. 
[22] Charng Y Y, Liu H C,Liu N Y,et al. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology ,2006,140(4): 12971305. 
[23] Padidam M. Chemically regulated gene expression in plants. Current Opinion in Plant Biology ,2003, 6(2):169177.

[1] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[2] 王曦光, 王娟, 张琳. 拟南芥蛋白质丰度与基因翻译效率关联分析[J]. 中国生物工程杂志, 2017, 37(2): 40-47.
[3] 杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.
[4] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[5] 孙欢, 贾海洋, 冯旭东, 刘月芹, 李春. 酿酒酵母耐热元器件的筛选[J]. 中国生物工程杂志, 2015, 35(3): 75-83.
[6] 聂利珍, 于肖夏, 李国婧, 孙杰, 姜超, 于卓. Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究[J]. 中国生物工程杂志, 2015, 35(11): 13-22.
[7] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[8] 于欣鑫, 高晋君, 李勇, 李晶. flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化[J]. 中国生物工程杂志, 2014, 34(5): 30-38.
[9] 方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J]. 中国生物工程杂志, 2014, 34(06): 84-89.
[10] 万永青, 李瑞丽, 邹博, 万东莉, 王瑞刚, 李国婧. 拟南芥SCBP60g蛋白的亚细胞定位及其功能研究[J]. 中国生物工程杂志, 2013, 33(9): 31-37.
[11] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[12] 郭森, 吴丹, 陈晟, 吴敬, 陈坚. 重组大肠杆菌产角质酶-CBM摇瓶发酵优化及分泌表达研究[J]. 中国生物工程杂志, 2011, 31(9): 55-61.
[13] 崔东清, 叶梅霞, 刘军梅, 李昊, 张志毅, 安新民. 毛白杨PtSEP2基因启动子克隆和瞬时表达特性分析[J]. 中国生物工程杂志, 2011, 31(5): 42-47.
[14] 孙佃臣, 沙爱华, 单志慧, 周蓉, 周新安. 拟南芥miR399耐低磷胁迫研究进展[J]. 中国生物工程杂志, 2011, 31(11): 102-106.
[15] 李荣锋, 于华华, 邢荣娥, 刘松, 李鹏程. 霞水母刺丝囊细胞热激蛋白60(Hsp60)的分离纯化与鉴定[J]. 中国生物工程杂志, 2011, 31(10): 35-38.