Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (06): 84-89    DOI: 10.13523/j.cb.20140612
综述     
海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用
方华, 李灏
北京化工大学生命科学与技术学院 北京 100029
The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae
FANG Hua, LI Hao
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
 全文: PDF(404 KB)   HTML
摘要:

在燃料乙醇发酵生产过程中,酿酒酵母经常会受到高浓度乙醇的胁迫,导致乙醇转化率和产量降低。面对高浓度乙醇的胁迫,酿酒酵母也具有应对胁迫的应激机制。在对这种应激机制进行了解的基础上,如能提高酿酒酵母对乙醇的耐受性,对于燃料乙醇生产具有重要意义。在高浓度乙醇胁迫下,酿酒酵母细胞会产生一系列保护性物质,如海藻糖、热激蛋白、脯氨酸等,这些物质能够提高酿酒酵母细胞对乙醇的耐受性。海藻糖作为一种重要的碳源、能量贮藏物质,不仅能稳定细胞膜、蛋白质和核酸等大分子物质,还可增强酿酒酵母对高浓度乙醇的耐受性。此外,酿酒酵母还可以产生大量的热激蛋白,增强酿酒酵母的抗逆性。从海藻糖和热激蛋白在乙醇胁迫下对酿酒酵母细胞保护作用的研究方面进行了综述,并对存在的问题进行了讨论与展望。

关键词: 酿酒酵母乙醇胁迫海藻糖热激蛋白    
Abstract:

During the process of bioethanol production, Saccharomyces cerevisiae cells are often stressed by the accumulated ethanol, which can lead to inhibition of S. cerevisiae growth and low bioethanol yield. To maintain the survival, S. cerevisiae cells have evolved a set of stress responses to environmental stimuli including ethanol stress. Fully understanding the mechanism of S. cerevisiae responses to ethanol will facilitate the development of strategies to improve the ethanol tolerance of S. cerevisiae and contribute to the construction of industrial feasible strains with high bioethanol yield. Under the stress of accumulated ethanol, some protectants, such as trehalose, heat shock proteins (HSPs), and proline can improve the ethanol tolerance of S.cerevisiae cells. As an important carbon source and energy storage material, trehalose can not only stabilize the cell membranes, proteins and nucleic acids, but also enhance the ethanol tolerance of S. cerevisiae. Furthermore, the up-regulation of HSPs can also improve the ethanol tolerance of S. cerevisiae cells. The progresses of protective roles of trehalose and HSPs for enhancing the ethanol tolerance of S. cerevisiae were focused on.

Key words: Saccharomyces cerevisiae    Ethanol stress    Trehalose    Heat shock protein
收稿日期: 2013-10-22 出版日期: 2014-06-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(31201413)

通讯作者: 李灏     E-mail: lihao@mail.buct.edu.cn;lihaoh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

方华, 李灏. 海藻糖与热激蛋白在酿酒酵母耐受乙醇胁迫中的作用[J]. 中国生物工程杂志, 2014, 34(06): 84-89.

FANG Hua, LI Hao. The Roles of Trehalose and Heat Shock Proteins for Enhancing Ethanol Tolerance of Saccharomyces cerevisiae. China Biotechnology, 2014, 34(06): 84-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140612        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I06/84


[1] Gonzalez P. Energy Use, Human. In Levin SA ed. Encyclopedia of Biodiversity. 2nd ed. Waltham, MA: Academic Press, 2013.250-266.

[2] Bai F W, Anderson W A, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 2008, 26 (1): 89-105.

[3] de Llanos R, Llopis S, Molero G, et al. In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits. International Journal of Food Microbiology, 2011, 144 (3): 393-399.

[4] Piper P W. The heat shock and ethanol stress response of yeast exhibit extensive similarity and functional overlap. FEMS Microbiology Letters, 1995, 134 (2-3): 121-127.

[5] Birch R M, Walker G M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26 (9-10): 678-687.

[6] Sree N K, Sridhar M, Suresh K, et al. Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technology, 2000, 72 (1): 43-46.

[7] Querol A, Femandez-Espinar M T, Delolmo M, et al. Adaptive evolution of wine yeast. International Journal of Agricultural and Food Chemistry, 2003, 86 (1/2): 3-10.

[8] Hiraishi H, Okada M, Ohtsu I, et al. A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc-4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Bioscience Biotechnology and Biochemistry, 2009, 73 (10): 2268-2273.

[9] Kubota S, Takeo L, Kume K, et al. Effect of ethanol on cell growth of budding yeast: genes those are important for cell growth in the presence of ethanol. Bioscience Biotechnology and Biochemistry, 2004, 68 (4): 968-972.

[10] Dinh T N, Nagahisa K, Hirasawa T, et al. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE, 2008, 3 (7): e2623.

[11] Ma M, Liu Z L. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 87 (3): 829-845.

[12] Araki Y, Wu H, Kitagaki H, et al. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2009, 107 (1): 1-6.

[13] Ma M, Han P, Zhang R, et al. Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress. Canadian Journal of Microbiology, 2013, 59 (9): 589-597.

[14] Ding J M, Huang X W, Zhang L M, et al. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009, 85 (2): 253-263.

[15] Hu X H, Wang M H, Tan T, et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics, 2007, 175 (3): 1479-1487.

[16] Teixeira M C, Raposo L R, Mira N P, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Applied and Environmental Microbiology, 2009, 75 (18): 5761-5772.

[17] Shioya S, Hirasawa T, Yoshikawa K, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology, 2007, 131 (1): 34-44.

[18] Li H, Ma M L, Luo S, et al. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. International Journal of Biochemistry & Cell Biology, 2012, 44 (7): 1087-1096.

[19] Hong M E, Lee K S, Yu B J, et al. Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. Journal of Biotechnology, 2010, 149 (1-2): 52-59.

[20] Chandler M, Stanley G A, Rogers P, et al. A stress response in the yeast Saccharomyces cerevisiae. Annals of Microbiology, 2004, 54 (4): 427-454.

[21] Wu H, Zheng X, Araki Y, et al. Global gene expression analysis of yeast cells during sake brewing. Applied and Environmental Microbiology, 2006, 72 (11): 7353-7358.

[22] Gibson B R, Lawrence S J, Leclaire J P, et al. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 2007, 31(5): 535-569

[23] Sharma S C. A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 1997, 152 (1): 11-15.

[24] Jules M, Beltran G, Franois J, et al. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH 2 encodes a functional cytosolic trehalase, and deletion of TPS 1 reveals Ath1p-dependent trehalose mobilization. Applied and Environmental Microbiology, 2008, 74 (3): 605-614.

[25] Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trealose: a multifunctional molecule. Glycobiology, 2003, 13 (4): 17-27.

[26] Mahmud S A, Hirasawa T, Furusawa C, et al. Understanding the mechanism of heat stress tolerance caused by high trehalose accumulation in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering, 2012, 113 (4): 526-528.

[27] Van Dijck P, Colavizza D, Smet P, et al. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Applied and Environmental Microbiology, 1995, 61 (1): 109-115.

[28] Eleutherio E C, Araujo P S, Panek A D. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. Biochimica et Biophysica Acta-biomembranes, 1993, 1156 (3): 263-266.

[29] Crowe J H, Carpenter J F, Crowe L M. The role of vitrification in anhydrobiosis. Annual Review of Physiology, 1998, 60: 73-103.

[30] Benaroudj N, Lee D H, Goldberg A L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry, 2001, 276 (26): 24261-24267.

[31] Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006, 6: 109.

[32] Voit E O. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. Journal of Theoretical Biology, 2003, 223 (1): 55-78.

[33] Bell W, Klaassen P, Ohnacker M, et al. Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. European Journal of Biochemistry, 1992, 209 (3): 951-959.

[34] Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. European Journal of Biochemistry, 1993, 216 (3): 849-861.

[35] De Virgilio C, Bürckert N, Bell W, et al. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. European Journal of Biochemistry, 1993, 212 (2): 315-323.

[36] Jules M, Beltran G, Parrou J L. New insights into trehalose metabolism by Saccharomyces cerevisiae: NTH 2 encodes a functional cytosolic trehalase, and deletion of TPS1 reveals Ath1p-dependent trehalose mobilization. Applied and Environmental Microbiology, 2008, 74 (3): 605-614.

[37] Kopp M, Müller H, Holzer H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1993, 268 (7): 4766-4774.

[38] Alizadeh P, Klionsky D J. Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae. FEBS Letters, 1996, 391 (3): 273-278.

[39] Alexandre H, Dequin S, Blondin B, et al. Global gene expression during short term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 2001, 498 (1): 98-103.

[40] Lucero P, Moreno E, Lagunas R, et al. Internal trehalose protects from inhibition by ethanol in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2000, 66 (10): 4456-4461.

[41] Mahmud S A, Hirasawa T, Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of Bioscience and Bioengineering, 2000, 109 (3): 262-266

[42] Kwon H B, Yeo E T, Hahn S E, et al. Cloning and characterization of genes encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatese from Zygocaccharomyces rouxii. FEMS Yeast Research, 2003, 3 (4): 433-440.

[43] Glover J R, Lindquist S. Hsp104, Hsp70, and Hsp40. Cell, 1998, 94 (1): 73-82.

[44] Sanchez Y, Taulien J, Borkovich K A, et al. Hsp104 is required for tolerance to many forms of stress. EMBO Journal, 1992, 11 (6): 2357- 2364.

[45] Alexandre H, Ansanay-Galeote V, Dequin S, et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 2001, 498 (1): 98-103.

[46] Izawa S, Kita T, Ikeda K, et al. Heat shock and ethanol stress provoke distinctly different responses in 3-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochemical Journal, 2008, 414 (1): 111-119.

[47] Morano K A, Liu P C, Thiele D J. Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Current Opinion in Microbiology, 1998, 1 (2): 197-203.

[48] Elliott B, Haltiwanger R S, Futcher B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics, 1996, 144 (3): 923-933.

[49] Son H S, Hwang G S, Kim K M, et al. 1H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains. Analytical Chemistry, 2009, 81 (3): 1137-1145.

[50] Ye Y, Zhu Y, Pan L, et al. Gaining insight into the response logic of Saccharomyces cerevisiae to heat shock by combining expression profiles with metabolic pathways. Biochemical and Biophysical Research Communications, 2009, 385 (3): 357-362.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[6] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[7] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[8] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[9] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[10] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[11] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[12] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[13] 刘翠翠, 胡梦蝶, 王志, 代俊, 姚娟, 李沛, 李志军, 陈雄, 李欣. 鲁氏酵母胞内海藻糖积累过程的代谢特征分析[J]. 中国生物工程杂志, 2017, 37(9): 41-47.
[14] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[15] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.