Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志
综述     
TRAF7的研究进展
万春红1, 张志1,2, 李圣纳1, 彭以元2, 许亮国1,2
1. 江西师范大学生命科学学院 南昌 330022;
2. 江西师范大学功能有机小分子教育部重点实验室 南昌 330022
Research Progresses on TRAF7
WAN Chun-hong1, ZHANG Zhi1,2, LI Sheng-na1, PENG Yi-yuan2, XU Liang-guo1,2
1. College of Life Science, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China;
2. Key Laboratory of Fuctional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
 全文: PDF  HTML
摘要:

TRAFs家族是一类多功能蛋白,最初是作为TNFR介导的信号通路中的转导分子而被发现的。TRAFs作为信号接头蛋白和调节分子,参与了TNFR、TLRs、NLRs和RLRs等多种受体介导的信号通路。TRAF7是最新发现的TRAF家族成员,因其保守的RING结构域,而具有E3泛素连接酶活性。此外,TRAF7还以其独特机制参与了MAP激酶、TNFR及TLR2介导的信号通路的转导,以及细胞应激、分化和凋亡等重要生理过程的调控,与乳腺癌、脑膜瘤等多种疾病的发生密切相关。结合最新研究进展对TRAF7的结构、功能及其参与的生物学过程进行综述。

关键词: 蛋白质翻译后修饰肿瘤发生TRAF7细胞分化细胞凋亡    
Abstract:

The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family was originally identified as signaling adaptors that directly bind to the cytoplasmic regions of receptors of the TNF-R superfamily. TRAFs have also been identified to function in signaling for TLRs, NLRs, RLRs, etc. TRAF7, the most recently identified member, acts as an E3 ubiquitin ligase with its conserved RING finger domain, essential for signal transduction pathways mediated by TNFR and TLR2. In addition, TRAF7 also regulates the activation of cellularstress pathways, as well as unconventional ubiquitination events, the differentiation of muscle tissue and tumorigenesis. The most recent advances in the understanding of TRAF7 function and the biological processes this protein is involved in.

Key words: Cell differentiation    Tumorigenesis    Apoptosis    TRAF7    Post-translational modification
收稿日期: 2015-10-08 出版日期: 2015-12-01
ZTFLH:  Q291  
基金资助:

国家自然科学基金(31570876),江西省自然科学基金重大项目(20143ACB20004)、江西师范大学研究生创新基金项目(YC2014S152)资助项目

通讯作者: 许亮国     E-mail: xul@jxnu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
万春红
张志
李圣纳
彭以元
许亮国

引用本文:

万春红, 张志, 李圣纳, 彭以元, 许亮国. TRAF7的研究进展[J]. 中国生物工程杂志, DOI:10.13523/j.cb.20160314.

WAN Chun-hong, ZHANG Zhi, LI Sheng-na, PENG Yi-yuan, XU Liang-guo. Research Progresses on TRAF7. China Biotechnology, DOI:10.13523/j.cb.20160314.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/DOI:10.13523/j.cb.20160314        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I3/93

[1] Bradley J R, Pober J S. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 2001, 20(44):6482-6491.
[2] Chung J Y, Park Y C, Ye H, et al. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci, 2002, 115(Pt 4):679-688.
[3] Thomas G S, Zhang L, Blackwell K, et al. Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res, 2009, 69(8):3665-3672.
[4] Xu L G, Li L Y, Shu H B. TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem, 2004, 279(17):17278-17282.
[5] Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol, 2004, 6(2):97-105.
[6] Morita Y, Kanei-Ishii C, Nomura T, et al. TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell, 2005, 16(11):5433-5444.
[7] Zimmer J, Lim J H, Jono H, et al. Tumor suppressor CYLD acts as a negative regulator for non-typeable haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS One, 2007, 2(10):e1032.
[8] Alvarez S E, Harikumar K B, Hait N C, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature, 2010, 465(7301):1084-1088.
[9] Kayagaki N, Phung Q, Chan S, et al. DUBA: a deubiquitinase that regulates type I interferon production. Science, 2007, 318(5856):1628-1632.
[10] Tsikitis1 M, Acosta-Alvear D, Blais A, et al. Traf7, aMyoD1 transcriptional target, regulates nuclear factor-kB activity duringmyogenesis. EMBO Mol Med, 2010, 11(12):969-976.
[11] Zotti T, Uva A, Ferravante A, et al. TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO) and p65/RelA protein and represses NF-kappaB activation. J Biol Chem, 2011, 286(26):22924-22933.
[12] Yoshida H, Jono H, Kai H, et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem, 2005, 280(49):41111-41121.
[13] Oh Y, Chung K C. UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131. J Biol Chem, 2013, 288(13):9102-9111.
[14] Nakamura K, Johnson G L. PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. J Biol Chem, 2003, 278(39):36989-36992.
[15] Scudiero I, Zotti T, Ferravante A, et al. Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem, 2012, 287(8):6053-6061.
[16] Chang L, Kamata H, Solinas G, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell, 2006, 124(3):601-613.
[17] Yang J K. FLIP as an anti-cancer therapeutic target. Yonsei Medical Journal, 2008, 49(1):19.
[18] Chen Z J. Ubiquitin Signaling in the NF-κB Pathway. Nat Cell Biol, 2005, 7(8):758-765.
[19] Clark V E, Erson-Omay E Z, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science, 2013, 339(6123):1077-1080.
[20] Reuss D E, Piro R M, Jones D T, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol, 2013, 125(3):351-358.
[21] Johnson M D, O'Connell M J, Pilcher W, et al. Fibroblast growth factor receptor-3 expression in meningiomas with stimulation of proliferation by the phosphoinositide 3 kinase-Akt pathway. J Neurosurg, 2010, 112(5):934-939.
[22] Wrobel G, Roerig P, Kokocinski F, et al. Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int J Cancer, 2005, 114(2):249-256.
[23] Goutagny S, Yang H W, Zucman-Rossi J, et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res, 2010, 16(16):4155-4164.
[24] Brastianos P K, Horowitz P M, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet, 2013, 45(3):285-289.
[25] Kim E S, Shohet J M. Reactivation of p53 via MDM2 inhibition. Cell Death Dis, 2015, 6(10):e1936.
[26] Patocs A, Zhang L, Xu Y, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med, 2007, 357(25):2543-2551.
[27] Wang L, Wang L, Zhang S, et al. Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep, 2013, 29(1):283-287.
[28] Wu J, Liu S, Liu G, et al. Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 2012, 31(3):333-341.
[29] Nwabo Kamdje A H, Seke Etet P F, Vecchio L, et al. Signaling pathways in breast cancer: therapeutic targeting of the microenvironment. Cell Signal, 2014, 26(12):2843-2856.
[30] Napetschnig J, Wu H. Molecular basis of NF-kappaB signaling. Annu Rev Biophys, 2013, 42:443-468.
[31] Boehm D, Bacher J, Neumann H P H. Gross genomic rearrangement involving the TSC2-PKD1 contiguous deletion syndrome: characterization of the deletion event by quantitative polymerase Chain reaction deletion assay. American Journal of Kidney Diseases, 2007, 49(1):e11-e21.
[32] Libby P, Ridker P M, Hansson G K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347):317-325.
[33] Wang Y, Wang F, Wu Y, et al. MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs. Mol Cell Biochem, 2015, 399(1-2):123-130. transduction pathway.Nat Cell Biol, 2004, 6(2):97-105. [6]Morita Y, Kanei-Ishii C, Nomura T, et al.TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation.Mol Biol Cell, 2005, 16(11):5433-5444. [7]Zimmer J, Lim J H, Jono H, et al.Tumor Suppressor CYLD Acts as a Negative Regulator for Non-Typeable Haemophilus influenza-Induced Inflammation in the Middle Ear and Lung of Mice.PLoS ONE, 2007, 2(10):e1032-. [8]Alvarez S E, Harikumar K B, Hait N C, et al.Sphingosine-1-phosphate is a missing cofactorfor the E3 ubiquitin ligase TRAF2.Nature, 2010, 465(7301):1084-1088. [9]Kayagaki N, Phung Q, Chan S, et al.DUBA: a deubiquitinase that regulates type I interferon production.Science, 2007, 318(5856):1628-1632. [10]Mary Tsikitis1 D A-A, Alexandre Blais, EricI.Traf7, aMyoD1 transcriptional target, regulates nuclear factor-kB activity duringmyogenesis. EMBO Mol Med, 2010, 11:969-976.., , :-. [11]Zotti T, Uva A, Ferravante A, et al.TRAF7 protein promotes Lys-29-linked polyubiquitination of IkappaB kinase (IKKgamma)NF-kappaB essential modulator (NEMO) and p65RelA protein and represses NF-kappaB activation.J Biol Chem, 2011, 286(26):22924-22933. [12]Yoshida H, Jono H, Kai H, et al.The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7.J Biol Chem, 2005, 280(49):41111-41121. [13]Oh Y, Chung K C.UHRF2,a ubiquitin E3 ligase,acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131.J Biol Chem, 2013, 288(13):9102-9111. [14]Nakamura K, Johnson G L.PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway.J Biol Chem, 2003, 278(39):36989-36992. [15]Scudiero I, Zotti T, Ferravante A, et al.Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein.J Biol Chem, 2012, 287(8):6053-6061. [16]Chang L, Kamata H, Solinas G, et al.The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover.Cell, 2006, 124(3):601-613. [17]Yang J K.FLIP as an Anti-Cancer Therapeutic Target.Yonsei Medical Journal, 2008, 49(1):19-. [18]Chen* Z J.Ubiquitin Signaling in the NF-κB Pathway.Nat Cell Biol, 2005, 7(8):758-765. [19]Clark V E, Erson-Omay E Z, Serin A, et al.Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7,KLF4,AKT1,and SMO.Science, 2013, 339(6123):1077-1080. [20]Reuss D E, Piro R M, Jones D T, et al.Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations.Acta Neuropathol, 2013, 125(3):351-358. [21]Wang L, Wang L, Zhang S, et al.Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer.Oncol Rep, 2013, 29(1):283-287. [22]Wu J, Liu S, Liu G, et al.Identification and functional analysis of 9p24 amplified genes in human breast cancer.Oncogene, 2012, 31(3):333-341. [23]Boehm D, Bacher J, Neumann H P H.Gross Genomic Rearrangement Involving the TSC2-PKD1 Contiguous Deletion Syndrome: Characterization of the Deletion Event by Quantitative Polymerase Chain Reaction Deletion Assay.American Journal of Kidney Diseases, 2007, 49(1):e11-e21. [24]Libby P, Ridker P M, Hansson G K.Progress and challenges in translating the biology of atherosclerosis.Nature, 2011, 473(7347):317-325. [25]Wang Y, Wang F, Wu Y, et al.MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs.Mol Cell Biochem, 2015, 399(1-2):123-130.

[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[3] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[4] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[5] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.
[6] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[7] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. PHP14沉默对肺癌细胞凋亡的影响及其机制[J]. 中国生物工程杂志, 2017, 37(7): 12-17.
[8] 李莉莉, 魏琦岩, 王艳芳, 何忠梅, 郜玉刚, 马吉胜. FGF/FGFR信号调控成骨细胞分化的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 107-113.
[9] 白欣艳, 温丽敏, 王玉晶, 王海龙, 解军, 郭睿. ANKRD49通过上调Bcl-xL的表达抑制UV诱导GC-1细胞的凋亡[J]. 中国生物工程杂志, 2017, 37(4): 40-47.
[10] 沈鹏飞, 王斌, 谢子康, 郑冲, 瞿玉兴. 软骨寡聚基质蛋白过表达对BMP-2诱导骨髓间充质干细胞分化的影响[J]. 中国生物工程杂志, 2016, 36(10): 1-7.
[11] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.
[12] 王明科, 孙慧勤, 粟永萍, 邹仲敏. 基因捕获技术的现状及应用[J]. 中国生物工程杂志, 2014, 34(12): 107-111.
[13] 邱华丽, 穰杰, 丁学知, 胡胜标, 张友明, 朱道奇, 夏立秋. 苦瓜MAP30蛋白的原核表达及其生物活性研究[J]. 中国生物工程杂志, 2014, 34(06): 40-46.
[14] 韩笑, 李娜, 杜培革. 抗肿瘤多肽研究进展[J]. 中国生物工程杂志, 2013, 33(6): 93-98.
[15] 王志明, 高健, 李耿. 治疗性单克隆抗体药物的现状及发展趋势[J]. 中国生物工程杂志, 2013, 33(6): 117-124.